1.3 Corollary For $\vec{v} \in S$, omitting that vector does not shrink the span $[S] = [S - {\vec{v}}]$ if and only if it is dependent on other vectors in the set $\vec{v} \in [S]$.

Example These two subsets of \mathbb{R}^3 have the same span

$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 4\\5\\6 \end{pmatrix}, \begin{pmatrix} 7\\8\\9 \end{pmatrix} \right\} = \left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 4\\5\\6 \end{pmatrix} \right\}$$

because in the first set $\vec{v}_3 = 2\vec{v}_2 - \vec{v}_1$.

1.13 Corollary A set S is linearly independent if and only if for any $\vec{v} \in S$, its removal shrinks the span $[S - \{v\}] \subsetneq [S]$. *Proof* This follows from Corollary 1.3. If S is linearly independent then none of its vectors is dependent on the other elements, so removal of any vector will shrink the span. If S is not linearly independent then it contains a vector that is dependent on other elements of the set, and removal of that vector will not shrink the span. QED 1.14 Lemma Suppose that S is linearly independent and that $\vec{v} \notin S$. Then the set $S \cup \{\vec{v}\}$ is linearly independent if and only if $\vec{v} \notin [S]$. *Proof* We will show that $S \cup \{\vec{v}\}$ is not linearly independent if and only if $\vec{v} \in [S]$.

Suppose first that $v \in [S]$. Express \vec{v} as a combination $\vec{v} = c_1 \vec{s}_1 + \cdots + c_n \vec{s}_n$. Rewrite that $\vec{0} = c_1 \vec{s}_1 + \cdots + c_n \vec{s}_n - 1 \cdot \vec{v}$. Since $v \notin S$, it does not equal any of the \vec{s}_i so this is a nontrivial linear dependence among the elements of $S \cup \{\vec{v}\}$. Thus that set is not linearly independent.

Now suppose that $S \cup \{\vec{v}\}$ is not linearly independent and consider a nontrivial dependence among its members $\vec{0} = c_1\vec{s}_1 + \dots + c_n\vec{s}_n + c_{n+1} \cdot \vec{v}$. If $c_{n+1} = 0$ then that is a dependence among the elements of S, but we are assuming that S is independent, so $c_{n+1} \neq 0$. Rewrite the equation as $\vec{v} = (c_1/c_{n+1})\vec{s}_1 + \dots + (c_n/c_{n+1})\vec{s}_n$ to get $\vec{v} \in [S]$

QED

1.16 *Corollary* In a vector space, any finite set has a linearly independent subset with the same span.

Proof If $S = {\vec{s}_1, ..., \vec{s}_n}$ is linearly independent then S itself satisfies the statement, so assume that it is linearly dependent.

By the definition of dependent, S contains a vector \vec{v}_1 that is a linear combination of the others. Define the set $S_1 = S - {\{\vec{v}_1\}}$. By Corollary 1.3 the span does not shrink $[S_1] = [S]$.

If S_1 is linearly independent then we are done. Otherwise iterate: take a vector \vec{v}_2 that is a linear combination of other members of S_1 and discard it to derive $S_2 = S_1 - \{\vec{v}_2\}$ such that $[S_2] = [S_1]$. Repeat this until a linearly independent set S_j appears; one must appear eventually because S is finite and the empty set is linearly independent. QED *Example* Consider this subset of \mathbb{R}^2 .

$$S = \{\vec{s}_1, \vec{s}_2, \vec{s}_3, \vec{s}_4, \vec{s}_5\} = \{\binom{2}{2}, \binom{3}{3}, \binom{1}{4}, \binom{0}{-1}, \binom{1}{-1}\}$$

The linear relationship

$$r_1\begin{pmatrix}2\\2\end{pmatrix}+r_2\begin{pmatrix}3\\3\end{pmatrix}+r_3\begin{pmatrix}1\\4\end{pmatrix}+r_4\begin{pmatrix}0\\-1\end{pmatrix}+r_5\begin{pmatrix}1\\-1\end{pmatrix}=\begin{pmatrix}0\\0\end{pmatrix}$$

gives a system of equations.

$$2r_{1} + 3r_{2} + r_{3} + r_{5} = 0$$

$$2r_{1} + 3r_{2} + 4r_{3} - r_{4} - r_{5} = 0$$

$$\xrightarrow{-\rho_{1} + \rho_{2}} 2r_{1} + 3r_{2} + r_{3} + r_{5} = 0$$

$$+ 3r_{3} - r_{4} - 2r_{5} = 0$$

Parametrize by expressing the leading variables r_1 and r_3 in terms of the free variables.

$$\left\{ \begin{pmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \end{pmatrix} = \begin{pmatrix} -3/2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} r_2 + \begin{pmatrix} -1/6 \\ 0 \\ 1/3 \\ 1 \\ 0 \end{pmatrix} r_4 + \begin{pmatrix} -5/6 \\ 0 \\ 2/3 \\ 0 \\ 1 \end{pmatrix} r_5 \mid r_2, r_4, r_5 \in \mathbb{R} \right\}$$

Set $r_5 = 1$ and $r_2 = r_4 = 0$ to get $r_1 = -5/6$ and $r_3 = 2/3$,

$$-\frac{5}{6} \cdot \begin{pmatrix} 2\\2 \end{pmatrix} + 0 \cdot \begin{pmatrix} 3\\3 \end{pmatrix} + \frac{2}{3} \cdot \begin{pmatrix} 1\\4 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0\\-1 \end{pmatrix} + 1 \cdot \begin{pmatrix} 1\\-1 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix}$$

showing that \vec{s}_5 is in the span of the set $\{\vec{s}_1, \vec{s}_3\}$. Similarly, setting $r_4 = 1$ and the other parameters to 0 shows \vec{s}_4 is in the span of the set $\{\vec{s}_1, \vec{s}_3\}$. Also, setting $r_2 = 1$ and the other parameters to 0 shows \vec{s}_2 is in the span of the same set. So we can omit the vectors $\vec{s}_2, \vec{s}_4, \vec{s}_5$ associated with the free variables without shrinking the span. The set $\{\vec{s}_1, \vec{s}_3\}$ is linearly independent and so we cannot omit any members without shrinking the span.