1.3 Corollary For $\vec{v} \in S$, omitting that vector does not shrink the span $[S]=[S-\{\vec{v}\}]$ if and only if it is dependent on other vectors in the set $\vec{v} \in[S]$.
Example These two subsets of \mathbb{R}^{3} have the same span

$$
\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right),\left(\begin{array}{l}
7 \\
8 \\
9
\end{array}\right)\right\} \quad\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)\right\}
$$

because in the first set $\vec{v}_{3}=2 \vec{v}_{2}-\vec{v}_{1}$.
1.13 Corollary A set S is linearly independent if and only if for any $\vec{v} \in S$, its removal shrinks the span $[S-\{v\}] \subsetneq[S]$.
Proof This follows from Corollary 1.3. If S is linearly independent then none of its vectors is dependent on the other elements, so removal of any vector will shrink the span. If S is not linearly independent then it contains a vector that is dependent on other elements of the set, and removal of that vector will not shrink the span.
1.14 Lemma Suppose that S is linearly independent and that $\vec{v} \notin S$. Then the set $S \cup\{\vec{v}\}$ is linearly independent if and only if $\vec{v} \notin[S]$.
Proof We will show that $S \cup\{\vec{v}\}$ is not linearly independent if and only if $\vec{v} \in[S]$.

Suppose first that $v \in[\mathrm{~S}]$. Express \vec{v} as a combination $\vec{v}=c_{1} \vec{s}_{1}+\cdots+c_{n} \vec{s}_{n}$. Rewrite that $\overrightarrow{0}=c_{1} \vec{s}_{1}+\cdots+c_{n} \vec{s}_{n}-1 \cdot \vec{v}$. Since $v \notin S$, it does not equal any of the \vec{s}_{i} so this is a nontrivial linear dependence among the elements of $S \cup\{\vec{v}\}$. Thus that set is not linearly independent.

Now suppose that $S \cup\{\vec{v}\}$ is not linearly independent and consider a nontrivial dependence among its members $\overrightarrow{0}=c_{1} \vec{s}_{1}+\cdots+c_{n} \vec{s}_{n}+c_{n+1} \cdot \vec{v}$. If $c_{n+1}=0$ then that is a dependence among the elements of S, but we are assuming that S is independent, so $c_{n+1} \neq 0$. Rewrite the equation as $\vec{v}=\left(c_{1} / c_{n+1}\right) \vec{s}_{1}+\cdots+\left(c_{n} / c_{n+1}\right) \vec{s}_{n}$ to get $\vec{v} \in[S]$
1.16 Corollary In a vector space, any finite set has a linearly independent subset with the same span.
Proof If $S=\left\{\vec{s}_{1}, \ldots, \vec{s}_{n}\right\}$ is linearly independent then S itself satisfies the statement, so assume that it is linearly dependent.

By the definition of dependent, S contains a vector \vec{v}_{1} that is a linear combination of the others. Define the set $S_{1}=S-\left\{\vec{v}_{1}\right\}$. By Corollary 1.3 the span does not shrink $\left[\mathrm{S}_{1}\right]=[\mathrm{S}]$.

If S_{1} is linearly independent then we are done. Otherwise iterate: take a vector \vec{v}_{2} that is a linear combination of other members of S_{1} and discard it to derive $S_{2}=S_{1}-\left\{\vec{v}_{2}\right\}$ such that $\left[S_{2}\right]=\left[S_{1}\right]$. Repeat this until a linearly independent set S_{j} appears; one must appear eventually because S is finite and the empty set is linearly independent.

Example Consider this subset of \mathbb{R}^{2}.

$$
S=\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}, \vec{s}_{4}, \vec{s}_{5}\right\}=\left\{\binom{2}{2},\binom{3}{3},\binom{1}{4},\binom{0}{-1},\binom{1}{-1}\right\}
$$

The linear relationship

$$
r_{1}\binom{2}{2}+r_{2}\binom{3}{3}+r_{3}\binom{1}{4}+r_{4}\binom{0}{-1}+r_{5}\binom{1}{-1}=\binom{0}{0}
$$

gives a system of equations.

$$
\begin{aligned}
& 2 r_{1}+3 r_{2}+r_{3}+r_{5}=0 \\
& 2 r_{1}+3 r_{2}+4 r_{3}-r_{4}-r_{5}=0
\end{aligned}
$$

$$
\begin{array}{rlrl}
-\rho_{1}+\rho_{2} & 2 r_{1}+3 r_{2} & +r_{3} & =0 \\
+3 r_{3}-r_{4}-2 r_{5} & =0
\end{array}
$$

Parametrize by expressing the leading variables r_{1} and r_{3} in terms of the free variables.

$$
\left\{\left.\left(\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3} \\
r_{4} \\
r_{5}
\end{array}\right)=\left(\begin{array}{c}
-3 / 2 \\
1 \\
0 \\
0 \\
0
\end{array}\right) r_{2}+\left(\begin{array}{c}
-1 / 6 \\
0 \\
1 / 3 \\
1 \\
0
\end{array}\right) r_{4}+\left(\begin{array}{c}
-5 / 6 \\
0 \\
2 / 3 \\
0 \\
1
\end{array}\right) r_{5} \right\rvert\, r_{2}, r_{4}, r_{5} \in \mathbb{R}\right\}
$$

Set $\mathrm{r}_{5}=1$ and $\mathrm{r}_{2}=\mathrm{r}_{4}=0$ to get $\mathrm{r}_{1}=-5 / 6$ and $\mathrm{r}_{3}=2 / 3$,

$$
-\frac{5}{6} \cdot\binom{2}{2}+0 \cdot\binom{3}{3}+\frac{2}{3} \cdot\binom{1}{4}+0 \cdot\binom{0}{-1}+1 \cdot\binom{1}{-1}=\binom{0}{0}
$$

showing that \vec{s}_{5} is in the span of the set $\left\{\vec{s}_{1}, \vec{s}_{3}\right\}$. Similarly, setting $r_{4}=1$ and the other parameters to 0 shows \vec{s}_{4} is in the span of the set $\left\{\vec{s}_{1}, \vec{s}_{3}\right\}$. Also, setting $r_{2}=1$ and the other parameters to 0 shows \vec{s}_{2} is in the span of the same set. So we can omit the vectors \vec{s}_{2}, \vec{s}_{4}, \vec{s}_{5} associated with the free variables without shrinking the span. The set $\left\{\vec{s}_{1}, \vec{s}_{3}\right\}$ is linearly independent and so we cannot omit any members without shrinking the span.

