Any Matrix Represents a Linear Map

The prior subsection shows how to start with a linear map and produce its matrix representation. What about the converse?
Example Fix a matrix

$$
H=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

and also fix a domain and codomain, with bases.

$$
\mathcal{E}_{2} \subset \mathbb{R}^{2} \quad\langle 1-x, 1+x\rangle \subset \mathcal{P}_{1}
$$

Is there a linear map between the spaces associated with the matrix?
Consider $h: \mathbb{R}^{2} \rightarrow \mathcal{P}_{1}$ defined by: for any domain vector \vec{v}, represent it with respect to the domain basis

$$
\vec{v}=\mathrm{c}_{1} \vec{e}_{1}+\mathrm{c}_{2} \vec{e}_{2} \quad \operatorname{Rep}_{\mathrm{E}_{2}}(\vec{v})=\binom{\mathrm{c}_{1}}{\mathrm{c}_{2}}
$$

multiply that representation by H

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{c_{1}+2 c_{2}}{3 c_{1}+4 c_{2}}
$$

and then call $h(\vec{v})$ the codomain vector represented by the result.

$$
h(\vec{v})=\left(c_{1}+2 c_{2}\right) \cdot(1-x)+\left(3 c_{1}+4 c_{2}\right) \cdot(1+x)
$$

The prior subsection shows how to start with a linear map and produce its matrix representation. What about the converse?
Example Fix a matrix

$$
H=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

and also fix a domain and codomain, with bases.

$$
\mathcal{E}_{2} \subset \mathbb{R}^{2} \quad\langle 1-x, 1+x\rangle \subset \mathcal{P}_{1}
$$

Is there a linear map between the spaces associated with the matrix?
Consider $h: \mathbb{R}^{2} \rightarrow \mathcal{P}_{1}$ defined by: for any domain vector \vec{v}, represent it with respect to the domain basis

$$
\vec{v}=\mathrm{c}_{1} \vec{e}_{1}+\mathrm{c}_{2} \vec{e}_{2} \quad \operatorname{Rep}_{\mathrm{E}_{2}}(\vec{v})=\binom{\mathrm{c}_{1}}{\mathrm{c}_{2}}
$$

multiply that representation by H

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{c_{1}+2 c_{2}}{3 c_{1}+4 c_{2}}
$$

and then call $h(\vec{v})$ the codomain vector represented by the result.

$$
h(\vec{v})=\left(c_{1}+2 c_{2}\right) \cdot(1-x)+\left(3 c_{1}+4 c_{2}\right) \cdot(1+x)
$$

2.2 Theorem Any matrix represents a homomorphism between vector spaces of appropriate dimensions, with respect to any pair of bases.

The book has the proof.

Mechanics of Matrix Multiplication
3.8 Definition The main diagonal (or principle diagonal or diagonal) of a square matrix goes from the upper left to the lower right.
3.9 Definition An identity matrix is square and every entry is 0 except for 1 's in the main diagonal.

$$
I_{n \times n}=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
& \vdots & & \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

Taking the product with an identity matrix returns the multiplicand. Example Multiplication by an identity from the left

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
3 & 2 \\
-1 & 5
\end{array}\right)=\left(\begin{array}{cc}
3 & 2 \\
-1 & 5
\end{array}\right)
$$

or from the right leaves the matrix unchanged.

$$
\left(\begin{array}{cc}
3 & 2 \\
-1 & 5
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
3 & 2 \\
-1 & 5
\end{array}\right)
$$

