Range space and null space

2.11 Definition The null space or kernel of a linear map  $h: V \to W$  is the inverse image of  $\vec{0}_W$ .

$$\mathscr{N}(h) = h^{-1}(\vec{0}_W) = \{ \vec{v} \in V \mid h(\vec{v}) = \vec{0}_W \}$$

The dimension of the null space is the map's *nullity*.



*Note* Strictly, the trivial subspace of the codomain is not  $\vec{0}_W$ , it is  $\{\vec{0}_W\}$ , and so we may think to write the nullspace as  $h^{-1}(\{\vec{0}_W\})$ . But we have defined the two sets  $h^{-1}(\vec{w})$  and  $h^{-1}(\{\vec{w}\})$  to be equal and the first is easier to write.

## Range space

2.2 Definition The range space of a homomorphism  $h: V \to W$  is  $\mathscr{R}(h) = \{h(\vec{v}) \mid \vec{v} \in V\}$ 

sometimes denoted h(V). The dimension of the range space is the map's *rank*.

*Example* This map from  $\mathcal{M}_{2\times 2}$  to  $\mathbb{R}^2$  is linear.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \stackrel{h}{\longmapsto} \begin{pmatrix} a+b \\ 2a+2b \end{pmatrix}$$

The range space is a line through the origin

$$\left\{ \begin{pmatrix} t \\ 2t \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

(every member of that set is the image

$$\begin{pmatrix} t \\ 2t \end{pmatrix} = h(\begin{pmatrix} t & 0 \\ 0 & 0 \end{pmatrix})$$

of a  $2 \times 2$  matrix). The map's rank is 1.

*Example* The homomorphism  $f: \mathfrak{M}_{2\times 2} \to \mathbb{R}^2$ 

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \stackrel{f}{\longmapsto} \begin{pmatrix} a+b \\ c+d \end{pmatrix}$$

has this null space

$$\mathcal{N}(f) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a + b = 0 \text{ and } c + d = 0 \right\}$$
$$= \left\{ \begin{pmatrix} -b & b \\ -d & d \end{pmatrix} \mid b, d \in \mathbb{R} \right\}$$

and a nullity of 2.

*Example* The dilation function  $d_3 \colon \mathbb{R}^2 \to \mathbb{R}^2$ 

$$\begin{pmatrix} a \\ b \end{pmatrix} \mapsto \begin{pmatrix} 3a \\ 3b \end{pmatrix}$$

has  $\mathscr{N}(d_3)=\{\vec{0}\}.$  A trivial space has an empty basis so  $d_3$  's nullity is 0.

## Rank plus nullity

2.14 *Theorem* A linear map's rank plus its nullity equals the dimension of its domain.

The book contains the proof.

*Example* Consider this map  $h: \mathbb{R}^3 \to \mathbb{R}$ .

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \stackrel{h}{\longmapsto} x/2 + y/5 + z$$

The null space is this plane.

$$\mathcal{N}(h) = h^{-1}(0) = \{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x/2 + y/5 + z = 0 \}$$

Other inverse image sets are also planes.

$$h^{-1}(1) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x/2 + y/5 + z = 1 \right\} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid z = 1 - x/2 - y/5 \right\}$$