Range space and null space

2.11 Definition The null space or kernel of a linear map $\mathrm{h}: \mathrm{V} \rightarrow \mathrm{W}$ is the inverse image of $\overrightarrow{0}_{W}$.

$$
\mathscr{N}(\mathrm{h})=\mathrm{h}^{-1}\left(\vec{o}_{W}\right)=\left\{\vec{v} \in \mathrm{~V} \mid \mathrm{h}(\vec{v})=\vec{o}_{W}\right\}
$$

The dimension of the null space is the map's nullity.

Note Strictly, the trivial subspace of the codomain is not $\overrightarrow{0}_{W}$, it is $\left\{\overrightarrow{0}_{W}\right\}$, and so we may think to write the nullspace as $h^{-1}\left(\left\{\overrightarrow{0}_{W}\right\}\right)$. But we have defined the two sets $h^{-1}(\vec{w})$ and $h^{-1}(\{\vec{w}\})$ to be equal and the first is easier to write.

Range space

2.2 Definition The range space of a homomorphism $\mathrm{h}: \mathrm{V} \rightarrow \mathrm{W}$ is

$$
\mathscr{R}(\mathrm{h})=\{\mathrm{h}(\vec{v}) \mid \vec{v} \in \mathrm{~V}\}
$$

sometimes denoted $h(V)$. The dimension of the range space is the map's rank.
Example This map from $\mathcal{M}_{2 \times 2}$ to \mathbb{R}^{2} is linear.

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \stackrel{h}{\longmapsto}\binom{a+b}{2 a+2 b}
$$

The range space is a line through the origin

$$
\left\{\left.\binom{\mathrm{t}}{2 \mathrm{t}} \right\rvert\, \mathrm{t} \in \mathbb{R}\right\}
$$

(every member of that set is the image

$$
\binom{t}{2 t}=h\left(\left(\begin{array}{ll}
t & 0 \\
0 & 0
\end{array}\right)\right)
$$

of a 2×2 matrix). The map's rank is 1 .

Example The homomorphism $\mathrm{f}: \mathcal{M}_{2 \times 2} \rightarrow \mathbb{R}^{2}$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \stackrel{f}{\longmapsto}\binom{a+b}{c+d}
$$

has this null space

$$
\begin{aligned}
\mathscr{N}(f) & =\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a+b=0 \text { and } c+d=0\right\} \\
& =\left\{\left.\left(\begin{array}{ll}
-b & b \\
-d & d
\end{array}\right) \right\rvert\, b, d \in \mathbb{R}\right\}
\end{aligned}
$$

and a nullity of 2 .
Example The dilation function $\mathrm{d}_{3}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\binom{a}{b} \mapsto\binom{3 a}{3 b}
$$

has $\mathscr{N}\left(\mathrm{d}_{3}\right)=\{\overrightarrow{0}\}$. A trivial space has an empty basis so d_{3} 's nullity is 0 .

Rank plus nullity

2.14 Theorem A linear map's rank plus its nullity equals the dimension of its domain.

The book contains the proof.
Example Consider this map $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$.

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \stackrel{h}{\longmapsto} x / 2+y / 5+z
$$

The null space is this plane.

$$
\mathscr{N}(\mathrm{h})=\mathrm{h}^{-1}(0)=\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \right\rvert\, x / 2+y / 5+z=0\right\}
$$

Other inverse image sets are also planes.

$$
h^{-1}(1)=\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \right\rvert\, x / 2+y / 5+z=1\right\}=\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \right\rvert\, z=1-x / 2-y / 5\right\}
$$

