1. Let

$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ 0 \\ 2x-y \end{pmatrix}.$$

and

$$g \colon \mathbb{R}^3 \to \mathbb{R}^2$$
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ x+z \end{pmatrix}$$

- (a) Give the matrix representation of f.
- (b) Give the matrix representation of g.
- (c) Give the matrix representation of $g \circ f$. Call this matrix A.
- (d) Let

$$\vec{v} = \begin{pmatrix} 2\\ -1 \end{pmatrix}$$

- i. Compute $f(\vec{v})$. Call this vector \vec{w} .
- ii. Compute $g(\vec{w})$.
- iii. Compute the matrix-vector product $A\vec{v}$.

2. Let

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

- (a) Compute A^{-1} .
- (b) Use A^{-1} to compute the solution set of the system

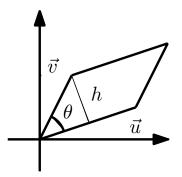
$$x + z = 2$$

$$x + 2y - z = 0$$

$$-y + 2z = -4$$

(Hint: This is the system $A\vec{x} = \vec{b}$ for some \vec{b} .)

3. Consider the parallelogram whose four corners are at the points A = (0,0), B = (3,1), C = (1,2) and D = (4,3). We will call \vec{u} the vector going from A to B (so $\vec{u} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$) and we will call \vec{v} the vector going from A to C (so $\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$). Finally, we denote the angle between the vectors \vec{u} and \vec{v} by θ and the height of the parallelogram by h.



- (a) What is $\cos \theta$?
- (b) What is $\sin \theta$? (Hint: You don't need to know θ to get $\sin \theta$.)
- (c) What is the length of h? (Hint: You will need $\sin \theta$ and $|\vec{v}|$.)
- (d) What is the area of the parallelogram? (Hint: The area of a parallelogram is height times base, and here the base is \vec{u} .)
- (e) Compute the determinant

$$\begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix}.$$

4. In this problem, let

$$A = \begin{pmatrix} 1/2 & 1/2 \\ -3/2 & 5/2 \end{pmatrix}.$$

- (a) What are the eigenvalues of A?
- (b) Compute A^{-1} .
- (c) What are the eigenvalues of A^{-1} ?