1. Let

$$
\begin{aligned}
f: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{3} \\
\binom{x}{y} & \mapsto\left(\begin{array}{c}
x+y \\
0 \\
2 x-y
\end{array}\right) .
\end{aligned}
$$

and

$$
\begin{aligned}
& g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \mapsto\binom{x+y}{x+z} .
\end{aligned}
$$

(a) Give the matrix representation of f.
(b) Give the matrix representation of g.
(c) Give the matrix representation of $g \circ f$. Call this matrix A.
(d) Let

$$
\vec{v}=\binom{2}{-1}
$$

i. Compute $f(\vec{v})$. Call this vector \vec{w}.
ii. Compute $g(\vec{w})$.
iii. Compute the matrix-vector product $A \vec{v}$.
2. Let

$$
A=\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

(a) Compute A^{-1}.
(b) Use A^{-1} to compute the solution set of the system

$$
\begin{aligned}
x+z= & 2 \\
x+2 y-z= & 0 \\
-y+2 z & =-4
\end{aligned}
$$

(Hint: This is the system $A \vec{x}=\vec{b}$ for some \vec{b}.)
3. Consider the parallelogram whose four corners are at the points $A=(0,0), B=$ $(3,1), C=(1,2)$ and $D=(4,3)$. We will call \vec{u} the vector going from A to B (so $\vec{u}=\binom{3}{1}$) and we will call \vec{v} the vector going from A to C (so $\vec{v}=\binom{1}{2}$). Finally, we denote the angle between the vectors \vec{u} and \vec{v} by θ and the height of the parallelogram by h.

(a) What is $\cos \theta$?
(b) What is $\sin \theta$? (Hint: You don't need to know θ to get $\sin \theta$.)
(c) What is the length of h ? (Hint: You will need $\sin \theta$ and $|\vec{v}|$.)
(d) What is the area of the parallelogram? (Hint: The area of a parallelogram is height times base, and here the base is \vec{u}.)
(e) Compute the determinant

$$
\left|\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right| .
$$

4. In this problem, let

$$
A=\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
-3 / 2 & 5 / 2
\end{array}\right)
$$

(a) What are the eigenvalues of A ?
(b) Compute A^{-1}.
(c) What are the eigenvalues of A^{-1} ?

