1. A matrix is called symmetric if for each of its entries $a_{i, j}$ we have $a_{i, j}=a_{j, i}$. For example, the matrix

$$
\left(\begin{array}{ccc}
2 & 4 & -1 \\
4 & 0 & 3 \\
-1 & 3 & -2
\end{array}\right)
$$

is symmetric.
(a) What is the dimension of the subspace of symmetric matrices inside $\mathcal{M}_{3 \times 3}$?
(b) Give a basis for this subspace, and prove that it is a basis.
2. Consider the space

$$
V=\left\{\binom{a+b}{a+c}: a, b, c \in \mathbb{R}\right\} .
$$

This is a subset of \mathbb{R}^{2}.
(a) Prove that this is a vector space. Please use the subspace property to make it quick.
(b) What is the dimension of this space?
(c) Give a basis for this space, and prove that it is a basis.

