Homomorphisms and matrices
convention: From now on, we will focus on homomorphisms $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.
Why? If $f: V \rightarrow W$
V is m-dimensional with basis

$$
\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}
$$

W is n-dimensional with basis

$$
\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{n}
$$

Then f must come from some $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$

$$
\text { with } \vec{v} \vee \cdots \xrightarrow[\uparrow]{W} a_{1} \vec{w}_{1}+\ldots+a_{n} \vec{w}_{n}
$$

$$
\underset{\operatorname{Rep}_{\left\{\vec{v}_{1}, \vec{v}_{m}\right\}} \mathbb{R}^{m} \xrightarrow{\downarrow} \xrightarrow{\uparrow} \mathbb{R}^{n}\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)}{ }
$$

So we are not missing ont
fact: Any homomorphism f is determined by its action on a basis of the domain.

If V is the domain with basis $\vec{v}_{1} \ldots \vec{v}_{m}$ and $\vec{v} \in V$, then

$$
\begin{aligned}
f(\vec{v}) & =f\left(a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\ldots+a_{m} \vec{v}_{m}\right) \\
& =a_{1} f\left(\vec{v}_{1}\right)+a_{2} f\left(\vec{v}_{2}\right)+\ldots+a_{m} f\left(\vec{v}_{m}\right)
\end{aligned}
$$

Example: $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
f\binom{1}{0}=\binom{1}{1} \quad f\binom{0}{1}=\binom{1}{-1}
$$

then $f\binom{2}{5}=f\left(2\binom{1}{0}+5\binom{0}{1}\right)=2\binom{1}{1}+5\binom{1}{-1}=\binom{7}{-3}$

$$
f\binom{x}{y}=f\left(x\binom{1}{0}+y\binom{0}{1}\right)=x\binom{1}{1}+y\binom{1}{-1}=\binom{x+y}{x-y}
$$

Example: $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
& \binom{a}{b} \mapsto\binom{a}{0} \\
& g\binom{1}{0}=\binom{1}{0} \quad g\binom{0}{1}=\binom{0}{0}
\end{aligned}
$$

Bookkeeping; For a basis $\vec{v}_{1}, \vec{v}_{2} \ldots \vec{v}_{m}$, write the matrix $A=\left(f\left(\vec{v}_{i}\right) f\left(\vec{v}_{z}\right) \ldots f\left(\vec{v}_{m}\right)\right)$ columns of H

Example: f is given by $\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$

$$
f\binom{1}{0} \quad\left\{f\binom{0}{1}\right.
$$

$$
\begin{array}{r}
\text { is given by }\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
g\binom{1}{0}^{\lambda} \quad g\binom{0}{1}
\end{array}
$$

Example: $\quad n: \mathbb{R}^{2} \rightarrow \mathbb{R}$

$$
\binom{a}{b}+2 a+3 b
$$

$$
h\binom{1}{0}=2 \quad h\binom{0}{1}=3 \quad \text { so } h \text { is given by }\left(\begin{array}{cc}
2 & 3 \\
\lambda & \uparrow \\
h\binom{1}{0} \\
h(0)
\end{array}\right)
$$

$$
n\binom{1}{0} \quad n\binom{0}{1}
$$

fact: $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ will be given by a $n \times m$ matrix
Definition: If f is represented by A. we define the matrix-vector product

$$
f_{\bullet \mathbb{R}^{m}}^{\vec{x}}=f(\vec{x})_{\mathbb{R}} \mathbb{R}^{n}
$$

This is a generalization of the dot product
Example:

$$
\begin{aligned}
\left(\begin{array}{ccc}
3 & 1 & 2 \\
0 & -2 & 5
\end{array}\right)\left(\begin{array}{r}
4 \\
-1 \\
-3
\end{array}\right) & =\binom{3 \cdot 4+1 \cdot(-1)+2(-3)}{0 \cdot 4+(-2)(-1)+5(-3)} \\
& =\binom{5}{-13}
\end{aligned}
$$

Fact: Every matrix is a homomorphism

$$
\begin{gathered}
\left(\begin{array}{rrr}
3 & 1 & 2 \\
0 & -2 & 5
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{3 x+y+2 z}{-2 y+5 z} \\
f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}
\end{gathered}
$$

Range space \& null space
$f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ has 2 important spaces associated to it

- the range space: everything in the image of f (everything "that gets hit" by f)
$\left\{\vec{W} \in \mathbb{R}^{n}\right.$ such that there is $\vec{v} \in \mathbb{R}^{m}$ with

$$
f(\vec{V})=\vec{W} \quad\} \subseteq \mathbb{R}^{n}
$$

Its dimension is called the rank of f the null space: everything that gets sent to 0

$$
\left\{\vec{v} \in \mathbb{R}^{m} ; \quad f(\vec{v})=0\right\}
$$

ITs dimension is called the nullity of f.
If f is given by the matrix it, then the range space is the column space of A.

Example: $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \mapsto\binom{3 x+y+2 z}{-2 y+5 z}
$$

$$
\stackrel{-1}{2} \rho_{2}\left(\begin{array}{ccc}
3 & 1 & 2 \\
0 & 1 & -5 / 2
\end{array}\right)^{\rho_{1}-\rho_{2}}\left(\begin{array}{ccc}
3 & 0 & 9 / 2 \\
0 & 1 & -5 / 2
\end{array}\right)^{\frac{1}{3} \rho_{i}}\left(\begin{array}{ccc}
1 & 0 & 3 / 2 \\
0 & 1 & -5 / 2
\end{array}\right)
$$

$\left(\begin{array}{lll}1 & 0 \\ 0 & 3 / 2 \\ n^{3} & 1 & -7 / 2\end{array}\right)$
leading variables
tree variable
gives the null space $\operatorname{basis}\left\{\left(\begin{array}{c}-3 / 2 \\ 5 / 2 \\ 1\end{array}\right)\right\}$
\rightarrow give the column space/Range space

$$
\text { basis }\left\{\binom{3}{0},\binom{1}{-2}\right\}
$$

The dimension of the domain gets totally "used up" either it goes to the null space or to the range space
dim of domain $=$ dim null + dim range allvariables $=$ free + leading

Connection to before:
f is one-to-one if and only if its nullity is 0 conly $\overrightarrow{0}$ goes to $\overrightarrow{0}$)
Also f is onto if and only if its rank is equal to the dimension of the codomain or target space.

Composition / Matrix multiplication
Let f be represented by the matrix A matrix B

If f and g have the same domain, $f+g$ is represented by $A+B$
(matrix addition)
Also if $r \in \mathbb{R}$,
$r f$ is represented by $r A$

Now suppose that $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$

$$
g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}
$$

then we can compose f and g :

$$
g \circ f: \mathbb{R}^{m} \xrightarrow{f} \mathbb{R}^{n} \xrightarrow{g} \mathbb{R}^{k}
$$

notice ORder! do Right-most first

$$
(g \circ f)(\vec{x})=g(f(\vec{x}))
$$

We define the product BA of 2 matrices to be the matrix corresponding to $g \circ f$.

Here $A \in \mathcal{M}_{n \times m} \quad B \in \mathcal{M}_{k \times n}$ and $B A \in M_{k \times m}$

Matrix multiplication is only defined if the sizes match up appropriately
Matrix multiplication generalizes the matrix-vector product
Matrix multiplication is not commutative!

Example

$$
\begin{aligned}
& \left(\begin{array}{lll}
3 & 1 & 6 \\
2 & 5 & 9
\end{array}\right)\left(\begin{array}{ccc}
2 & 0 & 4 \\
1 & -3 & 5 \\
4 & 2 & 7
\end{array}\right) \\
& \quad=\left(\begin{array}{ccc}
3 \cdot 2+1 \cdot 1+6 \cdot 4 & 3 \cdot 0+1(-3)+6 \cdot 2 & 3 \cdot 4+1 \cdot 5+6 \cdot 7 \\
2 \cdot 2+5 \cdot 1+9 \cdot 4 & 2 \cdot 0+5(-3)+9 \cdot 2 & 2 \cdot 4+5 \cdot 5+9 \cdot 7
\end{array}\right) \\
& \quad=\left(\begin{array}{ccc}
31 & 9 & 59 \\
45 & 3 & 96
\end{array}\right)
\end{aligned}
$$

The matrix $I=\left(\begin{array}{llll}1 & & & \\ & 1 & & \\ & & \ddots & \\ 0 & & 1\end{array}\right) \begin{gathered}\text { ones on diagonal } \\ \text { zeros every where } \\ \text { else }\end{gathered}$
is the identity
Example:

$$
\begin{aligned}
& \left(\begin{array}{lll}
2 & 3 & 1 \\
1 & 4 & 6
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 3 & 1 \\
1 & 4 & 6
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 3 & 1 \\
1 & 4 & 6
\end{array}\right)=\left(\begin{array}{lll}
2 & 3 & 1 \\
1 & 4 & 6
\end{array}\right)
\end{aligned}
$$

Inverses
Let $A \in M_{n} \times n$. If there is a matrix B with

$$
\begin{aligned}
& \quad B A=I \\
& \text { and } \quad A B=I
\end{aligned}
$$

then A is invertible and B is A^{\prime} s inverse

$$
B=A^{-1}
$$

Fact: A is invertible if and only if its rank is n.
A is invertible if and only if its nullity is 0 .
A is invertible if and only if the associated homomorphism f is an isomorphism.
A is invertible if and only if it is Row equivalent to I_{1} the identity matrix.

How to find A^{-1}

- write the big matrix (A|I)
- do Gauss-Jordan to get A in reduced echelon form, do everything to I too
- you will end with (I| A^{-1})

$$
\begin{aligned}
& \text { Example } A=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 4 \\
5 & 6 & 0
\end{array}\right) \\
& \left(\begin{array}{lll|lll}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & 0 & 1 & 0 \\
5 & 6 & 0 & 0 & 0 & 1
\end{array}\right) \sim \rho_{3}-5 \rho_{1}\left(\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & 0 & 1 & 0 \\
0 & -4 & -15 & -5 & 0 & 1
\end{array}\right) \\
& \stackrel{\rho_{3}+4 \rho_{2}}{\sim}\left(\begin{array}{lll|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & 0 & 1 & 0 \\
0 & 0 & 1 & -5 & 4 & 1
\end{array}\right) \\
& \stackrel{\rho_{2}-4 \rho_{3}}{\sim}-3 \rho_{3}\left(\begin{array}{lll|lcc}
1 & 2 & 0 & 16 & -12 & -3 \\
0 & 1 & 0 & 20 & -15 & -4 \\
0 & 0 & 1 & -5 & 4 & 1
\end{array}\right) \\
& \rho_{i}-2 \rho_{i}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -24 & 18 & 5 \\
0 & 1 & 0 & 20 & -15 & -4 \\
0 & 0 & 1 & -5 & 4 & 1
\end{array}\right)
\end{aligned}
$$

