Gauss's Method

Linear systems

1.1 Definition A linear combination of x_{1}, \ldots, x_{n} has the form

$$
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\cdots+a_{n} x_{n}
$$

where the numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$ are the combination's coefficients.
Example This is a linear combination of x, y, and z.

$$
(1 / 4) x+y-z
$$

1.1 Definition A linear equation in the variables x_{1}, \ldots, x_{n} has the form $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\cdots+a_{n} x_{n}=d$ where $d \in \mathbb{R}$ is the constant.

An n-tuple $\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathbb{R}^{n}$ is a solution of, or satisfies, that equation if substituting the numbers s_{1}, \ldots, s_{n} for the variables gives a true statement: $a_{1} s_{1}+a_{2} s_{2}+\cdots+a_{n} s_{n}=d$. A system of linear equations

$$
\begin{aligned}
a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots+a_{1, n} x_{n} & =d_{1} \\
a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots+a_{2, n} x_{n} & =d_{2} \\
& \vdots \\
a_{m, 1} x_{1}+a_{m, 2} x_{2}+\cdots+a_{m, n} x_{n} & =d_{m}
\end{aligned}
$$

has the solution $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ if that n-tuple is a solution of all of the equations.
Example There are three linear equations in this linear system.

$$
\begin{aligned}
(1 / 4) x+y-z & =0 \\
x+4 y+2 z & =12 \\
2 x-3 y-z & =3
\end{aligned}
$$

