
Solutions for Homework # 3, Problems 3-6
Math 320, Lecture 2

Spring 2009

3. The Forward Euler method gives us the following formula.

ỹn+1 = ỹn + hf(xn, ỹn)

In this specific problem, we see that f(x, y) = y + xy3. Thus, f(x0, y0) = y0 + x0 (y0)3. Using
the above formula, we get

ỹ(x0 + h) = ỹ1 = y0 + h(y0 + x0 (y0)3).

Because the Forward Euler method has error of the order of O(h), we expect that when h is
decreased by a factor of 3, the error will also be decreased by a factor of 3.

4. (a) This problem is basically identical to # 3. In this specific problem, we see that
f(x, y) = 2 + y

x . Thus, f(x0, y0) = 2 + y0

x0
. Using the above formula, we get

ỹ(x0 + h) = ỹ1 = y0 + h

(
2 +

y0

x0

)
.

(b) The Backward Euler method gives us the following formula.

ỹn+1 = ỹn + hf(xn+1 , ỹn+1)

Since x1 = x0 + h, we see that

f(x1, ỹ1) = 2 +
ỹ1

x1
= 2 +

ỹ1

x0 + h
.

If we plug this into the above formula, we can then solve for ỹ1 and get the following.

ỹ1 = y0 + h

(
2 +

ỹ1

x0 + h

)
= y0 + 2h +

hỹ1

x0 + h

ỹ1 −
hỹ1

x0 + h
= y0 + 2h

ỹ1

(
1− h

x0 + h

)
= y0 + 2h

ỹ1 =
y0 + 2h

1− h
x0+h

ỹ1 =
(y0 + 2h)(x0 + h)

x0 + h− h

ỹ1 =
(y0 + 2h)(x0 + h)

x0

Thus, ỹ1 = (y0+2h)(x0+h)
x0

.

5. (a) Note that the differential equation

dy

dx
= y − 2xy



is separable. So we can use the Separation of Variables technique discussed in class.

dy

dx
= y − 2xy

1
y
dy = (1− 2x)dx∫

1
y
dy =

∫
(1− 2x)dx

ln |y| = x− x2 + C

y = ±ex−x2+C

= Dex−x2

If we use the initial value y(0) = −2, we can solve for D.

y = Dex−x2

−2 = De0−02

−2 = D

Thus, by the method of separation of variables, we see that the solution is

y = −2ex−x2

and this is valid for all x.

(b) We now wish to write out the Taylor series centered at a = x0. In our case, x0 = 0.
Recall the formula for Taylor series expansion:

f(x) =
∞∑

n=0

f (n)(a)
n!

(x− a)n.

Since we only need to keep the first four nonzero terms, we only need to take a few
derivatives.

y(x) = −2ex−x2

y′(x) = −2(1− 2x)ex−x2

y′′(x) = −2(1− 2x)2ex−x2
+ 4ex−x2

y′′′(x) = −2(1− 2x)3ex−x2
+ (−2(2)(1− 2x)(−2)ex−x2

) + 4(1− 2x)ex−x2

= −2(1− 2x)3ex−x2
+ 8(1− 2x)ex−x2

+ 4(1− 2x)ex−x2

By plugging in a = 0, we get the following.

y(0) = −2e0−02
= −2

y′(0) = −2(1− 2(0))e0−02
= −2

y′′(0) = −2(1− 2(0))2e0−02
+ 4e0−02

= 2

y′′′(0) = −2(1− 2(0))3e0−02
+ 8(1− 2(0))e0−02

+ 4(1− 2(0))e0−02
= 10

If we put this together with the formula above we get that

y(x) ≈ y(0) + y′(0)x +
y′′(0)

2!
x2 +

y′′′(0)
3!

x3

≈ −2− 2x +
2
2
x2 +

10
3!

x3

≈ −2− 2x + x2 +
5
3
x3.
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Thus, y(x0 + h) ≈ −2− 2h + h2 + 5
3h3.

Alternatively, we could have used our previous knowledge of the Taylor series for ex:

ex = 1 + x +
x2

2
+

x3

6
+ ...

Plugging in x− x2, we get:

ex−x2
= 1 + (x− x2) +

(x− x2)2

2
+

(x− x2)3

6
+ ...

We can now multiply by −2:

−2ex−x2
= −2− 2x + 2x2 − (x− x2)2 − (x− x2)3

3
+ ...

Finally we expand to get

−2ex−x2
= −2− 2x + 2x2 − x2 + 2x3 − x4 − x3

3
+ ... = −2− 2x + x2 +

5
3
x3 + ...

(c) The Forward Euler method gives us the following formula.

ỹn+1 = ỹn + hf(xn, ỹn)

Note that in this problem, f(x, y) = y − 2xy, x0 = 0 and y0 = −2. Thus, we get the
following approximation for y1.

ỹ(x0 + h) = ỹ1

= ỹ0 + hf(x0, ỹ0)
= −2 + hf(0,−2)
= −2 + h((−2)− 2(0)(−2))
= −2− 2h

So, ỹ(x0 + h) = −2− h.

(d) We see that the first two terms of the Taylor series approximation for y(x0 + h) are the
same as the first two terms of ỹ(x0 + h).

6. (a) Note that the differential equation

dy

dx
= −sin(x) cos(x)

y

is separable. So we can use the Separation of Variables technique discussed in class.

dy

dx
= −sin(x) cos(x)

y

y dy = − sin(x) cos(x) dx∫
y dy =

∫
− sin(x) cos(x) dx

y2 = cos2(x) + C

If we use the initial value y(0) = 1, we can solve for C.

y2 = cos2(x) + C

12 = cos2(0) + C

1 = 1 + C

C = 0
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Thus, by the method of separation of variables, we see that y2 = cos2(x). So, y must be
plus or minus cos(x).

y = ± cos(x)

When we plug in the initial condition again, we see that we must choose the positive
rather than the negative. Thus, the solution is

y = cos(x)

and this is valid for all x.
(b) One can determine the Taylor series for this problem in the same way as we did in

Problem 5. However, y = cos(x) is a very common function and we know that

cos(x) = 1− x2

2
+

x4

4!
− x6

6!
+

x8

8!
+ ...

If we only write out the first four nonzero terms, we see that

cos(x) ≈ 1− x2

2
+

x4

24
− x6

720
.

(c) The Improved Euler Method gives us the following formula:

ỹn+1 = ỹn + h
f(xn, ỹn) + f(xn+1 , Sn)

2
,

where Sn = ỹn + hf(xn, ỹn). Note that in this problem, we only wish to find

ỹ(x0 + h) = ỹ1 = y0 + h
f(x0, y0) + f(x1, S0)

2
.

Also note that in this problem, f(x, y) = − sin(x) cos(x)
y , x0 = 0, and y0 = 1.

f(x0, y0) = f(0, 1)

= −sin(0) cos(0)
1

= 0

S0 = y0 + hf(x0, y0)
= 1 + h(0)
= 1

f(x1, S0) = f(0 + h, 1)
= f(h, 1)

= −sin(h) cos(h)
1

= − sin(h) cos(h)

= −1
2

sin(2h)

Thus, we get that

ỹ(x0 + h) = y0 + h
f(x0, y0) + f(x1, S0)

2

= 1 + h
0 + (−1

2 sin(2h))
2

= 1− 1
4
h sin(2h).
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Note that if this problem required you to write out the Taylor series expansion for
the approximation we just found (which it doesn’t), you could easily find the Taylor
approximation for sin(2h) by first using the fact that

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ ...

and then plugging in x = 2h.

(d) Because the Improved Euler method has O(h2), we expect that if the step size is de-
creased from h to h

4 , the error will decrease by a factor of
(

1
4

)2 = 1
16 .
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