Math 130: Proof of divisibility test for 4

Theorem
A number is divisible by 4 if and only if the number formed by its last 2 digits is divisible by 4.

Proof:
Using expanded form, any whole number \(N \) can be written as
\[
N = 100a + b
\]
where \(a \) is some whole number and \(b \) is the number formed by the last two digits of \(N \).

We have that \(100a = 4 \cdot (25a) \) so 100a is divisible by 4.

By the divisibility lemma, \(N \) is divisible by 4 if and only if \(b \), the number formed by its last 2 digits, is divisible by 4.

\(\square \)
Discussion of the proof.

The proof has 3 steps:

1 - using expanded form to write $N = 100a + b$, where b is the number formed by the last 2 digits of N.

2 - showing that $100a$ is divisible by 4.

3 - using the divisibility lemma.

I will discuss each step separately.

Step 1 -

1. Write each of the numbers

 2,838 ; 179 ; 26,344

 in the form $100a + b$. Is b really the number formed by the last 2 digits? Can you really always do something like this?

2. Why did we choose to write N as $100a + b$? Why not $N = 4a + b$?

 or $N = 1000a + b$?

 or $N = 10a + b$?

Can we always write N as $4a + b$ for some numbers a and b? What about for $N = 1000a + b$ and $N = 10a + b$?
Step 2 -

1. Which of the following numbers are in the form $100a$ for some whole number a:

 \[2500 \quad ; \quad 230 \quad ; \quad 3300 \]

 Are the numbers that are of the form $100a$ really divisible by 4?

2. We say that a number is divisible by 4 if it can be written as 4 times a whole number. $100a$ is 4 times what whole number? (It might help you to think of the numbers in 1 that are of the form $100a$. For each of them, write down what a is, and write down what you get when you divide the number by 4. Do you see a pattern?)
Step 3-

1. When we apply the divisibility lemma to $N = 100a + b$, which number is the A from the lemma? Which number is the B from the lemma? Which number is the $A+B$ from the lemma? To answer this, it might help you to look back to 1 in Step 1- and apply the divisibility lemma to those numbers.