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Abstract

This paper describes a class of Artin–Schreier curves, generalizing results of Van
der Geer and Van der Vlugt to odd characteristic. The automorphism group of these
curves contains a large extraspecial group as a subgroup. Precise knowledge of this
subgroup makes it possible to compute the zeta functions of the curves in the class
over the field of definition of all automorphisms in the subgroup. As a consequence,
we obtain new examples of maximal curves.
2010 Mathematics Subject Classification. Primary 14G10. Secondary: 11G20,14H37.

1 Introduction

In [21], Van der Geer and Van der Vlugt introduced a class of Artin–Schreier curves over
a finite field with a highly rich structure. For example, these curves have a very large
automorphism group that contains a large extraspecial p-group as a subgroup. Results of
Lehr–Matignon [11] show that the automorphism groups of these curves are “maximal” in
a precise sense. (Lehr–Matignon call this a big action.) A further remarkable property is
that all these curves are supersingular. This yields an easy way of producing large families
of supersingular curves.

In [21], the authors explore these curves and their Jacobians over fields of characteristic 2.
In this case, there is an intriguing connection between the curves in this class and the weight
enumerator of Reed–Müller codes, which was their original motivation for investigating this
family of curves. In Section 13 of [21], they sketched extensions of some of their results to
odd characteristic, but few details are given. The present paper extends the main results
and strategy of [21] to the corresponding class of curves in odd characteristic, providing full
details and proofs.

The main difference between the two cases is that the aforementioned extraspecial group
of automorphisms has exponent p in the case of odd characteristic p, whereas the exponent
is 4 in characteristic 2. As a result, some of the arguments in the odd characteristic case are
more involved than those of [21]. Moreover, we have streamlined the reasoning of [21] and
combined it with ideas from [11] to describe the automorphism group of the curves under
investigation.
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Arguably the most important object associated to an algebraic curve is its zeta function
which encodes a large amount of information about the curve, including point counts for
example. Our main result is Theorem 8.4 which computes the zeta function of the family
of curves under consideration over a sufficiently large field. This not only generalizes the
corresponding result in [21] for characteristic 2, but we also note that the authors of [21] do
not offer an odd-characteristic analogue in their paper.

The most prominent member of the family of curves considered in this paper is the
Hermite curve (Example 9.5), which is well known to be a maximal curve over fields of
square cardinality. While this property does not extend to all members of the family under
investigation, our work does produce other maximal curves. New explicit examples of curves
with many points that do not occur in the table ([20]) are listed in Remark 9.2.

We now describe the content of this paper in more detail. Let p be an odd prime and
R(X) ∈ Fp[X] an additive polynomial of degree ph, i.e., for indeterminates X and Y , we
have R(X + Y ) = R(X) + R(Y ). We denote by CR the smooth projective curve given by
the Artin–Schreier equation

Y p − Y = XR(X).

The key to the structure of the curve CR is the bilinear form Tr(XR(Y )+Y R(X)), introduced
in Section 2, whose kernel W is characterized in Proposition 2.1.(2). We obtain an expression
for the number of points of CR over a finite field in terms of W . Over a sufficiently large
field Fq of even cardinality, we conclude that the curve CR is either maximal or minimal, i.e,
either the upper or lower Hasse–Weil bound is obtained (Theorem 2.5 and part 2 of Remark
8.2). To determine which of these cases applies, we use the automorphisms of CR.

In Sections 3 and 4, we show that W also determines a large p-subgroup P of the group of
automorphisms (Theorem 4.3). With few exceptions, P is the Sylow p-subgroup of Aut(CR)
(Theorem 4.4). It is an extraspecial group of exponent p and order p2h+1, where deg(R) = ph

(Theorem 5.3).
In general, the size of the automorphism group restricts the possibilities for the number

of rational points of a curve. In our situation, there is a concrete relationship, since both
the automorphisms and the rational points of CR may be described in terms of the space
W . We establish a point-counting result that applies to the smallest field Fq over which all
automorphisms in P are defined.

The determination of the zeta function of CR over Fq (Theorem 8.4) relies on a decom-
position result for the Jacobian J(CR) of CR (Proposition 6.3) that is an application of a
result of Kani–Rosen [8]. More precisely, we show that J(CR) is isogenous over Fq to the
product of Jacobians of quotients of CR by suitable subgroups of P over Fq (Proposition
6.3). These quotient curves are twists of the curve CR0 with R0(X) = X (Theorem 7.4) for
which we may determine the zeta function by explicit point counting. Putting everything
together yields a precise expression for the zeta function of CR.

Our results also yield new examples of maximal curves (Section 9). The main technical
difficulty here is determining the field Fq over which all automorphisms in P are defined.
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1.1 Notation

Let p denote an odd prime, Fp the finite field of order p, and k = Fp the algebraic closure
of Fp. All curves under consideration are assumed to be smooth, projective and absolutely
irreducible. Consider the curve CR defined by the affine equation

Y p − Y = XR(X), (1.1)

where

R(X) =
h∑
i=0

aiX
pi ∈ Fpr [X]

is a fixed additive polynomial of degree ph with h ≥ 0, whose coefficient field is denoted Fpr .
Note that R is additive, i.e., R(X + Y ) = R(X) +R(Y ) in Fpr [X]. Thus, CR is defined over
Fpr and has genus

g(CR) =
ph(p− 1)

2
.

Of interest will be the polynomial E(X) derived from R(X) via

E(X) = (R(X))p
h

+
h∑
i=0

(aiX)p
h−i ∈ Fpr [X] (1.2)

with zero locus
W = {c ∈ k | E(c) = 0}. (1.3)

Note that the formal derivative of E(X) with respect to X is the constant non-zero polyno-
mial ah, so E(X) is a separable additive polynomial of degree p2h with coefficients in Fpr . It
follows that W is an Fp-vector space of dimension 2h. When h = 0, i.e., R(X) = a0X, we
have W = {0}.

We denote by Fq the splitting field of E(X), so W ⊂ Fq. In Section 4 of this paper
we will define and investigate a subgroup P of the group of automorphisms of CR, and the
automorphisms contained in P will be defined over this field Fq.

For convenience, we summarize the most frequently used notation in Table 1.

3



Table 1: Frequently used notation

Symbol Meaning and place of definition

p an odd prime
Fpr field of definition of R(X) and of CR (Section 1.1)
Fps an arbitrary extension of Fpr (Section 2)
Fq Fq ⊇ Fpr splitting field of E(X) (Section 1.1)

k = Fp algebraic closure of Fp (Section 1.1)
CR the curve CR : Y p − Y = XR(X) over Fpr (1.1)
CA quotient curve CR/A (Theorem 7.4)

R(X) R(X) =
∑h

i=0 aiX
pi ∈ Fpr [x] an additive polynomial (1.1)

E(X) E(X) = (R(X))p
h

+
∑h

i=0(aiX)p
h−i ∈ Fpr [X] (1.2)

b, c elements in k with bp − b = cR(c) (Remark 3.3)
Bc(X) = B(X) polynomial s.t. B(X)p −B(X) = cR(X) +R(c)X, (2.3) and (3.2)
W (Fps) W (Fps) = {c ∈ Fps : TrFps/Fp(cR(y) + y(R(c)) = 0 for all y ∈ Fps} (2.2)
W W = W (Fq), space of zeros of E(X) (1.3)
S(f) S(f) = {(a, c, d) ∈ k∗ × k × F∗p : there exists g ∈ k[X] such that

f(aX + c)− df(X) = g(X)p − g(X)} (3.1)
σa,b,c,d automorphism in Aut0(CR) (4.1)
σb,c σb,c = σ1,b,c,1 (beginning of Section 5)
ρ Artin-Schreier automorphism, ρ = σ1,1,0,1 (just after (4.1))
Aut0(CR) group of automorphisms on CR that fix ∞ (beginning of Section 4)
P Sylow p-subgroup of Aut0(CR) (Lemma 4.1)
H H = Aut0(CR)/P (Theorem 4.3)
Z(G) center of a group G
E(p3) extraspecial group of order p3 and exponent p (Corollary 5.4)
A a maximal abelian subgroup of P (Proposition 5.5)
JR JR = Jac(CR), the Jacobian variety of CR
J ∼F J

′ the abelian varieties J and J ′ are isogenous over the field F (Section 6).
LC(T ) numerator of the zeta function of the curve C (before Corollary 8.3)

2 The kernel of the bilinear form associated to CR

Let Fps be any extension of Fpr . For each s a multiple of r, we associate to the curve CR the
s-ary quadratic form

x 7→ TrFps/Fp(xR(x))
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on Fps , where TrFps/Fp : Fps → Fp is the trace from the s-dimensional vector space Fps down
to Fp. The associated symmetric bilinear form on Fps × Fps is

(x, y) 7→ 1

2
TrFps/Fp(xR(y) + yR(x)), (2.1)

with kernel

W (Fps) = {c ∈ Fps : TrFps/Fp(cR(y) + yR(c)) = 0 for all y ∈ Fps}. (2.2)

Note that W (Fps) is a vector space over Fp. The following characterizations and properties
of W (Fps) will turn out to be useful.

Proposition 2.1. Let c ∈ Fps. Then the following hold:

1. If c ∈ W (Fps), then TrFps/Fp(cR(c)) = 0.

2. We have c ∈ W (Fps) if and only if there exists a polynomial B(X) ∈ Fps [X] with

B(X)p −B(X) = cR(X) +R(c)X. (2.3)

Moreover, there is a unique solution Bc(X) ∈ XFps [X] to the equation (2.3), and

(a) The polynomial Bc(X) is additive.

(b) Every solution B(X) of (2.3) is of the form B(X) = Bc(X) +β for some β ∈ Fp.
(c) If c1, c2 ∈ W (Fps), then Bc1+c2(X) = Bc1(X) +Bc2(X).

3. We have c ∈ W (Fps) if and only if E(c) = 0, where E(X) is the polynomial of (1.2)
with zero locus W as defined in (1.3). In other words, W (Fps) = W ∩ Fps.

Proof.

1. Let c ∈ W (Fps). Then substituting y = c into (2.2) yields TrFps/Fp(2cR(c)) = 0. Since
TrFps/Fp(X) is Fp-linear and p is odd, this forces TrFps/Fp(cR(c)) = 0.

2. The proof of part 2 is analogous to that of Proposition 3.2 of [21]. Assume that
c ∈ W (Fps). We show the existence of a solution B of (2.3), and show that statements
2a–2c hold.

Recursively define the bi using the following formulas.

b0 = −ca0 −R(c), (2.4)

bi = −cai + bpi−1 for 1 ≤ i ≤ h− 1. (2.5)

Now set Bc(X) =
∑h−1

i=0 biX
pi . Then Bc(X) ∈ XFps [X], Bc(X) is additive, and

Bc1+c2(X) = Bc1(X) + Bc2(X) for all c1, c2 ∈ W (Fps). Furthermore, a simple cal-
culation reveals that

Bp
c (X)−Bc(X) = cR(X) +R(c)X + εXph
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with ε = bph−1 − cah ∈ Fps . Note that TrFps/Fp(Bc(y)p − Bc(y)) = 0 for all y ∈ Fps by
the additive version of Hilbert’s Theorem 90.

If c ∈ W (Fps), then TrFps/Fp(cR(y) + yR(c)) = 0 for all y ∈ Fps , so TrFps/Fp(εyp
h
) = 0,

which forces ε = 0. Hence Bc(X) satisfies (2.3), and

bph−1 = cah. (2.6)

Moreover, if B(X) is any solution to (2.3), then (B(X) − Bc(X))p = B(X) − Bc(X),
so B(X)−Bc(X) ∈ Fp.
Conversely, if (2.3) has a solution B(X) ∈ Fps [X], then

0 = TrFps/Fp(B(y)p −B(y)) = TrFps/Fp(cR(y) +R(c)y)

for all y ∈ Fps , so c ∈ W (Fps).

3. This result is stated for p odd in Proposition 13.1 and proved for p = 2 in Proposition
3.1 of [21]. It is also addressed in Remark 4.15 of the preprint [10] (the explicit
statement is not included in [11], but can readily be deduced from the results therein).

Remark 2.2. The characteristic-2 analog of Proposition 2.1 can be found in Section 5 of
[21]. However, part 1 of Proposition 2.1 does not hold in characteristic p = 2 in general.

Part 3 of Proposition 2.1 immediately establishes the following corollary.

Corollary 2.3. W (Fps) ⊆ W , with equality for any extension of Fps of the splitting field Fq
of E.

We conclude this section with a connection between the Fp-dimension of the space Vs =
Fps/W (Fps) and the number of Fps-rational points on the curve CR. This is obtained by
projecting the bilinear form (2.1) onto Vs. We write x = x+W (Fps) for the elements in Vs.
Proposition 2.6 is one of the key ingredients in the determination of the zeta function of CR
over Fq (Theorem 8.4).

Proposition 2.4. Define a map Qs on Vs × Vs via

Qs(x, y) =
1

2
TrFps/Fp(xR(y) + yR(x)).

Then Qs is a non-degenerate bilinear form on Vs × Vs.

Proof. We begin by showing that Qs is well-defined. Let x1, x2 ∈ Fps . Then

x1 = x2 ⇐⇒ x1 − x2 ∈ W (Fps)
⇐⇒ TrFps/Fp((x1 − x2)R(y) + yR(x1 − x2)) = 0 for all y ∈ Fps
⇐⇒ TrFps/Fp(x1R(y) + yR(x1)) = TrFps/Fp(x2R(y) + yR(x2)) for all y ∈ Fps
⇐⇒ Qs(x1, y) = Qs(x2, y) for all y ∈ Vs.
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Similarly, one obtains that y1 = y2 if and only if Qs(x, y1) = Qs(x, y2) for all x ∈ Vs. So if
(x1, y1) = (x2, y2), then Qs(x1, y1) = Qs(x1, y2) = Qs(x2, y2).

It is obvious that Qs is bilinear. To establish non-degeneracy, let x ∈ Vs with Qs(x, y) = 0
for all y ∈ Vs. Then TrFps/Fp(xR(y) + yR(x)) = 0 for all y ∈ Fps , so x ∈ W (Fps), and hence

x = 0.

It follows that the quadratic form x 7→ Qs(x, x) on Vs is non-degenerate. Therefore, its
zero locus

{x ∈ Vs : TrFps/Fp(xR(x)) = 0}
defines a smooth quadric over Fp.

In [7], Joly provides a formula for the cardinality of the zero locus of a non-degenerate
quadratic form, which we reproduce here for the convenience of the reader. The case of n
odd is treated in Chapter 6, Section 3, Proposition 1, and the case of n even is Proposition
2 of Chapter 6, Section 3. Note that in [7], the result is proved for forms over an arbitrary
finite field, but we restrict to Fp here which is sufficient for our purpose.

Theorem 2.5. Let a1X
2
1 + · · · + anX

2
n be a non-degenerate quadric in n variables with

coefficients in Fp, and N the cardinality of its zero locus. Then

N =


pn−1 if n is odd,

pn−1 + (pn/2 − pn/2−1) if n is even and (−1)n/2a1 · · · an ∈ (F∗p)2,
pn−1 − (pn/2 − pn/2−1) if n is even and (−1)n/2a1 · · · an /∈ (F∗p)2.

Applying this result to the quadric x 7→ TrFps/Fp(xR(x)) on the space Fps/W (Fps), we
obtain the following point count for the curve CR.

Proposition 2.6 (Proposition 13.4 of [21]). Let ws = dimFp(W (Fps)) and ns = s−ws. Then
the number of Fps-rational points on CR is

#CR(Fps) =

{
ps + 1 for ns odd,

ps + 1± (p− 1)
√
ps+ws for ns even,

with the sign depending on the coefficients of the quadratic form Qs.

Proof. We have Vs = Fps/W (Fps) ' Fns
p , where ns = s− ws. Therefore, for x̄ ∈ Vs, we may

write x̄ = (x1, . . . , xns), with each xi ∈ Fp. In this way, Qs(x, x) on the space Vs is a non-
degenerate quadric in ns variables with coefficients in Fp. Furthermore, it is diagonalizable
by [2], Theorem 3.1 of Chapter 8, since p is odd, and therefore can be written in the form∑ns

i=1 aiX
2
i with ai ∈ Fp for 1 ≤ i ≤ ns. As a consequence we may apply Theorem 2.5 to

obtain the cardinality of the set

{x ∈ Vs ' Fns
p : Qs(x, x) = 0} = {x ∈ Vs : TrFps/Fp(xR(x)) = 0}.

Each x ∈ Vs with Qs(x, x) = 0 gives rise to pws distinct values x ∈ Fps such that
TrFps/Fp(xR(x)) = 0. For each of these x ∈ Fps , we have p solutions y to the equation
yp − y = xR(x). In addition to these points, CR has one point at infinity which is defined
over any extension of Fpr . Hence #CR(Fps) = pws+1N + 1 with N given as in Theorem 2.5
(with n = ns).
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3 Connection to automorphisms of CR

In this section, we generalize the results of Proposition 2.1 to lay the groundwork for our
investigation of the k-automorphisms of CR that stabilize∞, the unique point at infinity on
CR. We follow Section 3 of [11], but our notation is slightly different. To that end, we define
for any polynomial f(X) ∈ k[X] the set

S(f(X)) = {(a, c, d) ∈ k∗ × k × F∗p : there exists g(X) ∈ Xk[X] such that

f(aX + c)− df(X) = g(X)p − g(X)}. (3.1)

In our situation we take f(X) = XR(X), where R(X) is an additive polynomial of degree
ph. It is easy to verify that if (a, c, d) ∈ S(XR(X)) then the map (x, y) 7→ (ax+ c, dy+g(x))
is an automorphism on CR that fixes ∞. In fact, in Lemma 4.1 we will see that every
automorphism of CR that fixes ∞ is of this form. The elements in S(XR(X)), along with
the polynomial g(X), can be characterized explicitly as follows.

Proposition 3.1. If h = 0, then S(XR(X)) = {(a, 0, a2) : a2 ∈ F∗p}.

Proof. If h = 0, then R(X) = a0X, so

(aX + c)R(aX + c)− dXR(X) = a0
(
(a2 − d)X2 + 2acX + c2

)
.

This polynomial is of the form g(X)p−g(X) if and only if g(X)p−g(X) = 0, or equivalently,
a2 = d, c = 0 and g(X) ∈ Fp.

Proposition 3.2.

1. Assume that h ≥ 1 and let a ∈ k∗, c ∈ k and d ∈ F∗p. Then (a, c, d) ∈ S(XR(X)) if
and only if there exists B(X) ∈ Xk[X] such that

cR(X) +R(c)X = B(X)p −B(X), (3.2)

and
aR(aX) = dR(X). (3.3)

2. If the equivalent conditions of part 1 are fulfilled, then c and B(X) satisfy the following
conditions.

(a) c ∈ W .

(b) The polynomial B(X) = Bc(X) only depends on c and is uniquely determined by
(3.2) and the condition that Bc(X) ∈ Xk[X]. It is an additive polynomial with
coefficients in Fpr(c) ⊆ Fq.

(c) The polynomial Bc(X) is identically zero if and only if c = 0, and has degree ph−1

otherwise.
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3. For a triple (a, c, d) ∈ S(XR(X)), all polynomials g(X) as given in (3.1) are of the
form

g(X) = Bc(aX) +
Bc(c)

2
+ i,

as i ranges over Fp. In particular, each of these polynomials g(X) has coefficients in
Fq(a).

Proof.

1. Let (a, c, d) ∈ k∗ × k × F∗p. Suppose first that there exists B(X) ∈ Xk[X] satisfying
(3.2), and that a and d satisfy (3.3). Then for any b ∈ k such that bp − b = cR(c), we
have

(aX + c)R(aX + c)− dXR(X) = X(aR(aX)− dR(X)) + cR(aX) + aXR(c) + cR(c)

= B(aX)p −B(aX) + bp − b,

and so we may take g(X) = B(aX) + b to show that (a, c, d) ∈ S(XR(X)).

Conversely, suppose that (a, c, d) ∈ S(XR(X)). Then there exists a polynomial g(X) ∈
k[X] such that

X(aR(aX)− dR(X)) + cR(aX) + aR(c)X + cR(c) = g(X)p − g(X).

Writing g(X) = b + B̃(X) with B̃(X) ∈ Xk[X], we see that this is equivalent to the

existence of a polynomial B̃(X) ∈ Xk[X] such that

B̃(X)p − B̃(X) = XF (X) +G(X) (3.4)

where F (X) = aR(aX) − dR(X) and G(X) = cR(aX) + aR(c)X are both additive
polynomials. We note for future reference during the proof of part 3 that this also
implies bp − b = cR(c).

Note that (3.3) holds if and only if F (X) = 0, in which case B(X) = B̃(X/a) ∈ Xk[X]
satisfies (3.2). Thus, it suffices to show that (a, c, d) ∈ S(XR(X)) implies F (X) = 0
to complete the proof of part 1.

To this end, we note that all the monomials in XF (X) and G(X) are of the form Xpi+1

and Xpi for 0 ≤ i ≤ h. If B̃(X) = 0, then this immediately forces F (X) = G(X) = 0,

so assume that B̃(X) 6= 0.

Comparing degrees in (3.4) shows that deg(B̃) ≤ ph−1. Put

B̃(X) =

ph−1∑
j=1

b̃jX
j, b̃j ∈ k for 1 ≤ j ≤ ph−1,
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and consider the polynomial B̃(X)p − B̃(X). Its coefficient of Xj for 1 ≤ j ≤ ph is
−b̃j when p - j,
b̃pj/p − b̃j when p | j and j ≤ ph−1,

b̃p
ph−1 when j = ph.

All coefficients of Xj for j 6= pi, pi + 1 must vanish. We conclude that the coefficients
b̃j of B̃(X) are zero for all j 6= pi, pi + 1, so we may write B̃(X) = XU(X) + V (X)
where U(X), V (X) ∈ k[X] are additive polynomials. Then (3.4) yields

XpU(X)p + V (X)p −XU(X)− V (X) = XF (X) +G(X).

Except for the monomials in XpU(X)p, this polynomial identity only contains mono-
mials of the form Xpi and Xpi+1; the monomials in XpU(X)p all take the form Xp+pi+1

.
This forces U(X) = 0. Thus, XF (X) = V (X)p − V (X) − G(X) is additive, which is
only possible if F (X) = 0. The proof of part 1 is now complete.

2. The proof of part 2 is now straightforward. We remark that equation (3.2) is identical
to equation (2.3). Therefore (a) follows from part 2 of Proposition 2.1, and B(X) is
identical to the polynomial Bc(X) defined in that proposition since B(X) ∈ Xk[X].
Thus, B(X) only depends on c and is unique, and we write Bc(X) for this polynomial
from now on. The additivity of Bc(X) was already established in the proof of part 1,

since Bc(X) = B̃(X/a), and B̃(X) = V (X) is additive; note that it also follows from
part 2a of Proposition 2.1. Moreover, the coefficients of Bc satisfy (2.4)-(2.6), which
obviously belong to Fpr(c). Part 1 and Corollary 2.3 imply that Fpr(c) ⊆ Fq. This
proves (b).

If c = 0, then Bc(X) = 0. If c 6= 0, the polynomial Bc(X) is obviously nonzero and
(2.6) shows that Bc(X) has degree ph−1. This proves (c).

3. Writing g(X) = b+B̃(X) with B̃(X) ∈ Xk[X] as in the proof of part 1, we have already

seen that Bc(X) = B̃(X/a), and b is any solution to the equation bp− b = cR(c). Any
two such solutions differ by addition of an element in Fp. Furthermore, since 2 ∈ F∗p,
it follows from (3.2) that b = Bc(c)/2 satisfies bp − b = cR(c), and the first statement
of part 3 follows. The second statement of part 3 follows from part 2b.

Remark 3.3. We repeat here a remark made in the proof since we will use this throughout
the paper. For a triple (a, c, d) ∈ S(XR(X)), all polynomials g(X) as given in (3.1) can be
written as

g(X) = Bc(aX) + b,

where Bc(aX) ∈ Fq(a), and b ∈ k is a solution of the equation

bp − b = cR(c). (3.5)

Part 3 of Proposition 3.2 implies that every solution b of this equation is of the form b =
Bc(c) + i with i ∈ Fp.

10



4 Automorphism group of CR

In this section we apply the results of the previous section to study the group Aut(CR) of
k-automorphisms of the curve CR, and more particularly the subgroup Aut0(CR) of auto-
morphisms of CR that fix the unique point at infinity, i.e., the unique point of CR which
does not belong to the affine curve defined by (1.1). The main result is Theorem 4.3, which
describes Aut0(CR).

Recall from Section 3 that to a triple (a, c, d) ∈ S(XR(X)) we associate the k-auto-
morphism

σa,b,c,d : CR → CR

(x, y) 7→ (ax+ c, dy + b+Bc(ax))
(4.1)

of CR. Here b is a solution of the equation bp − b = cR(c) (see Remark 3.3) and Bc is as in
Proposition 3.2. Note that σa,b,c,d fixes the point ∞. In the rest of the paper, we denote by

ρ(x, y) = σ1,1,0,1(x, y) = (x, y + 1)

the Artin–Schreier automorphism of the curve CR.
The following lemma summarizes some properties of the automorphisms σa,b,c,d.

Lemma 4.1. With the above notation and assumptions, we have

1. Every element of the stabilizer Aut0(CR) of the point ∞ is of the form σa,b,c,d as in
(4.1).

2. The automorphisms σ1,b,c,1 with (b, c) 6= (0, 0) have order p. For (a, d) 6= (1, 1) the
order of σa,b,c,d is not a p-power.

Proof. The lemma follows from Corollaries 3.4 and 3.5 in [11]. We recall the proof.

1. Part 1 follows from Proposition 3.3 of [11] in the case that g(CR) ≥ 2. (Since p is
odd in our set-up and the genus of CR is ph(p − 1)/2, this only excludes the case
that h = 0 and p = 3. This case is treated in the proof of Corollary 3.4 of [11].)
Namely, let ϕ ∈ Aut0(CR) be an automorphism of CR fixing ∞. Then the proof of
Proposition 3.3 of [11] shows that there exists an isomorphism ϕ̃ : P1 → P1 together
with a commutative diagram

CR
ϕ //

��

CR

��
P1 ϕ̃ // P1,

where the vertical maps are (x, y) 7→ x.

The morphism ϕ̃ fixes ∞ ∈ P1, hence it is an affine linear transformation and we may
write it as ϕ̃(x) = ax + c with a ∈ k∗ and c ∈ k. The commutative diagram above
implies that ϕ(x, y) = (ax + c, dy + g(x)) for some g(X) ∈ k(X) and d ∈ k∗. The
assumption that ϕ fixes the point ∞ implies that g(X) ∈ k[X] is a polynomial. The
statement that ϕ = σa,b,c,d follows since ϕ is assumed to be an automorphism of CR.
This proves part 1.
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2. To prove part 2 we first remark that if σa,b,c,d has p-power order, then a = d = 1, since
1 is the only pth root of unity in k. We show that every nontrivial automorphism
σ1,b,c,1 has order p.

We compute that

σp1,b,c,1(x, y) = (x+ pc, y + pb+Bc(x) +Bc(x+ c) + · · ·+Bc(x+ (p− 1)c)).

Recall from Proposition 3.2 thatBc is an additive polynomial; in particular, its constant
term vanishes. Hence

Bc(X) +Bc(X + c) + · · ·+Bc(X + (p− 1)c) =

p−1∑
i=0

Bc(ic) =

p−1∑
i=0

iBc(c) = 0.

This implies that σp1,b,c,1 = 1.

Remark 4.2. Part 1 of Lemma 4.1 does not hold for p = 2. In [21], Theorem 4.1 it is shown
that Aut0(CR) always contains automorphisms of order 4 for h ≥ 1 and p = 2. See also [11],
Section 7.2 for a concrete example.

The following result is Theorem 13.3 of [21], and describes the group Aut0(CR). The
structure of the Sylow p-subgroup P of Aut0(CR) will be described in more detail in Section 5
below.

Theorem 4.3.

1. The group Aut0(CR) has a unique Sylow p-subgroup, which we denote by P . It is the
subgroup consisting of all automorphisms σ1,b,c,1 and has cardinality p2h+1.

2. The automorphisms σa,0,0,d form a cyclic subgroup H ⊂ Aut0(CR) of order

e
p− 1

2
· gcd
i≥0
ai 6=0

(pi + 1),

where e = 2 if all of the indices i such that ai 6= 0 have the same parity, and e = 1
otherwise.

3. The group Aut0(CR) is the semi-direct product of the normal subgroup P and the sub-
group H.

Proof.
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1. To prove part 1, one easily checks that {σ1,b,c,1 | σ1,b,c,1 ∈ Aut0(CR)} is a subgroup of
Aut0(CR). (This is similar to the proof of Lemma 5.2 below.) The statements on the
order of σa,b,c,d in part 2 of Lemma 4.1 imply that P is the unique Sylow p-subgroup
of Aut0(CR), which implies that P is a normal subgroup.

Parts 2a and 3 of Proposition 3.2 imply that the cardinality of P is equal to |W | · p.
The last statement of part 1 therefore follows from part 3 of Proposition 2.1, since E
is a separable polynomial of degree p2h.

2. To prove part 2, we consider all elements (a, 0, d) ∈ S(XR(X)). Part 2c of Proposition
3.2 implies that the polynomial B0 corresponding to this tuple is zero. Part 2 of
Proposition 3.2 therefore implies that (a, 0, d) ∈ S(XR(X)) if and only if aR(aX) =
dR(X). This condition is equivalent to d = ap

i+1 for all 0 ≤ i ≤ h with ai 6= 0, as can
be readily seen by comparing coefficients in aR(aX) and dR(X). Part 2 now follows
immediately.

3. Note that the order of H is prime to p. In particular, we have H ∩ P = {1}. Part 3
follows since Aut0(CR) is generated by H and P .

For completeness we state the following theorem, which follows from [15], Satz 6 and
Satz 7. (See also Theorem 3.1 of [11].) Since we study the automorphism group of CR over
the algebraically closed field k here, it is no restriction to assume that R(X) is monic.

Theorem 4.4. Let R be monic.

1. Assume that R(X) /∈ {X,Xp}. Then Aut(CR) = Aut0(CR).

2. If R(X) = Xp, then Aut(CR) = PGU3(p)

3. If R(X) = X, then Aut(CR) ' SL2(p).

For future reference we note the following result on the higher ramification groups of the
point∞ ∈ CR in the cover CR → CR/Aut0(CR). For the definition of the higher ramification
groups and their basic properties we refer to [14], Chapter 4 or [16], Chapter 3.

Lemma 4.5. Let R be an additive polynomial of degree h ≥ 1, and CR as given in (1.1).

1. The filtration of higher ramification groups in the lower numbering of Aut0(CR) is

G = G0 = Aut0(CR) ) P = G1 ) G2 · · · = G1+ph = 〈ρ〉 ) {1}.

2. Let H ⊂ Aut(CR) be any subgroup which contains ρ. Then g(CR/H) = 0.

13



Proof. To prove part 1, write ν∞ for the valuation at the unique point ∞ at infinity and
choose a uniformizing parameter t at ∞. One easily computes that

ν∞

(
σ(t)− t

t

)
=

{
1 + ph if σ ∈ 〈ρ〉 \ {1},
1 if σ ∈ P \ 〈ρ〉.

This may also be deduced from the fact that the quotient of CR by the subgroup generated
by the Artin–Schreier automorphism ρ(x, y) = (x, y + 1) has genus 0 ([12], Lemma 2.4).

Part 2 follows immediately from the fact that the function field of the curve CR/〈ρ〉 is
k(X). This can also be deduced from part 1.

5 Extraspecial groups and the structure of P

We now focus again on the subgroup P described in part 1 of Theorem 4.3. Part 2 of Lemma
4.1 implies that the Sylow p-subgroup P of Aut0(CR) consists precisely of the automorphisms
σ1,b,c,1(x, y) = (x+ c, y + b+Bc(x)). For brevity, we simplify their notation to

σb,c = σ1,b,c,1.

The main result of the section, Theorem 5.3, states that P is an extraspecial group. For
more details on extraspecial groups we refer the reader to [5, Chapter III.13] and [18].

Definition 5.1. A noncommutative p-group G is extraspecial if its center Z(G) has order p
and the quotient G/Z(G) is elementary abelian.

We denote by E(p3) the unique nonabelian group of cardinality p3 and exponent p. It
can be given by generators and relations as follows:

E(p3) = 〈x, y | xp = yp = [x, y]p = 1, [x, y] ∈ Z(E(p3))〉.

This group obviously is an extraspecial group.
The following lemma describes the commutation relation in P . The lemma contains the

key steps to prove that P is an extraspecial group.

Lemma 5.2. Assume that h ≥ 1.

1. We have [σb1,c1 , σb2,c2 ] = ρ−ε(c1,c2), where

ε(c1, c2) = Bc1(c2)−Bc2(c1).

2. We have Z(P ) = [P, P ] = 〈ρ〉. The quotient group P/Z(P ) is isomorphic to the space
W defined in equation (1.3), where the isomorphism is induced by σb,c 7→ c.

3. Any two non-commuting elements σ, σ′ of P generate a normal subgroup Eσ,σ′ := 〈σ, σ′〉
of P which is isomorphic to E(p3).
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Proof.

1. To prove part 1, we compute that

σ−1b,c (x, y) = (x− c, y − b−Bc(x− c)).

We therefore have

σb1,c1σb2,c2σ
−1
b1,c1

σ−1b2,c2(x, y) = σb1,c1σb2,c2σ
−1
b1,c1

(x− c2, y − b2 −Bc2(x− c2))
= σb1,c1σb2,c2(x− c2 − c1, y − b2 −Bc2(x− c2)− b1 −Bc1(x− c2 − c1))
= σb1,c1(x− c1, y −Bc2(x− c2)− b1 −Bc1(x− c2 − c1) +Bc2(x− c2 − c1))
= σb1,c1(x− c1, y − b1 −Bc1(x− c2 − c1)−Bc2(c1))

= (x, y −Bc1(x− c2 − c1)−Bc2(c1) +Bc1(x− c1))
= (x, y +Bc2(c1)−Bc1(c2)).

Since σb1,c1σb2,c2σ
−1
b1,c1

σ−1b2,c2 certainly belongs to Aut0(CR), part 1 of Lemma 4.1 implies

that σb1,c1σb2,c2σ
−1
b1,c1

σ−1b2,c2 = σa,b,c,d for some a, b, c and d. From our computation above,
a = d = 1, and c = 0. By part 2c of Proposition 3.2, Bc(X) = 0, which implies that
b = Bc2(c1)−Bc1(c2) ∈ Fp. Part 1 follows.

2. Part 1 shows that [P, P ] ⊂ 〈ρ〉. Since P is noncommutative, we have equality. Because
ρ = σ1,0 and B0(X) = 0 by part 2c of Proposition 3.2, we have that for any σb,c,

σb,cρσ
−1
b,c ρ

−1 = ρBc(0) = 1,

since Bc(X) is an additive polynomial and therefore has no constant term. Thus ρ
commutes with every element of P , and [P, P ] = 〈ρ〉 ⊆ Z(P ).

To finish the proof of the first statement of part 2, we now show that if c1 6= 0, then
for each automorphism σb1,c1 there exists an automorphism σb2,c2 such that σb1,c1 and
σb2,c2 do not commute. This shows that in fact 〈ρ〉 = Z(P ).

Let c1 ∈ W \{0}. By part 2 of Proposition 2.1 and part 1 of Proposition 3.2, (1, c1, 1) ∈
S(XR(X)) and by part 2c of Proposition 3.2, Bc1(X) has degree ph−1. Considering
c2 =: C as a variable, the recursive formulas (2.4) and (2.5) for the coefficients bi of BC

show that degC(bi) ≤ ph+i. We conclude that the degree of ε(c1, C), when considered
as polynomial in C, is at most p2h−1. Since the cardinality of W is p2h, it follows that
there exists a c2 ∈ W , and therefore σb2,c2 ∈ P , such that ε(c1, c2) 6= 0. We conclude
that Z(P ) = 〈ρ〉.
Since ρσb,c = σb+1,c, it follows from part 3 of Proposition 3.2 that the map

P → W, σb,c 7→ c

is a surjective group homomorphism with kernel 〈ρ〉. This proves part 2.
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3. Let σ := σb1,c1 , σ
′ := σb2,c2 ∈ P be two noncommuting elements, and write ε = ε(c1, c2).

Part 1 implies that σσ′ = ρ−εσ′σ. Since σ, σ′ and ρ have order p (part 2 of Lemma 4.1),
it follows that σ and σ′ generate a subgroup E(σ, σ′) of order p3 of P , which contains
Z(P ) = 〈ρ〉. Since the exponent of this subgroup is p, it is isomorphic to E(p3).

For an arbitrary element σb,c ∈ P , part 1 implies that σb,cσσ
−1
b,c ∈ 〈ρ, σ〉 ⊂ E(σ, σ′),

and similarly for σ′ replacing σ. Thus E(σ, σ′) is a normal subgroup, proving part 3.

Theorem 5.3. Assume that h ≥ 1. Then the group P is an extraspecial group of exponent
p.

Proof. Since h ≥ 1, part 2 of Lemma 5.2 shows that P is an extraspecial group. Part 2 of
Lemma 4.1 yields that P has exponent p.

We now show that P is a central product of h copies of E(p3), i.e., P is isomorphic to
the quotient of the direct product of h copies of E(p3), where the centers of each copy have
been identified. These subgroups of P of order p3 have been described in part 3 of Lemma
5.2.

Corollary 5.4. Assume that h ≥ 1. Then P is a central product of h copies of E(p3).

Proof. Theorem III.13.7.(c) of [5] states that P is the central product of h extraspecial groups
Pi of order p3. Since P has exponent p, it follows that the groups Pi have exponent p as
well. Therefore Pi ' E(p3).

We describe the decomposition of P as a central product from Corollary 5.4 explicitly;
this description is in fact the proof given in [5, Theorem III.13.7.(c)]. The proof of part 2 of
Lemma 5.2 shows that ε(c1, c2) defines a nondegenerate symplectic pairing

W ×W → Fp, (c1, c2) 7→ ε(c1, c2).

We may choose a basis (c1, . . . , ch, c
′
1, . . . , c

′
h) of W such that

ε(ci, c
′
j) = δi,j,

where δi,j is the Kronecker function. In particular, it follows that 〈c1, . . . , ch〉 ⊂ W is a
maximal isotropic subspace of the bilinear form ε.

For every i, choose elements σi, σ
′
i ∈ P which map to ci, c

′
i, respectively, under the quotient

map from part 2 of Lemma 5.2. This corresponds to choosing an element bi as in part 3 of
Proposition 3.2 for each i. Part 1 of Lemma 5.2 implies that σi does not commute with σ′i,
but commutes with σj, σ

′
j for every j 6= i. Therefore Ei = 〈σi, σ′i〉 is isomorphic to E(p3)

(part 3 of Lemma 5.2). It follows that P is the central product of the subgroups Ei.
We finish this section with a description of the maximal abelian subgroups of P . This

will be used in Section 6 to obtain a decomposition of the Jacobian of CR.
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Proposition 5.5. Let h ≥ 1.

1. Every maximal abelian subgroup A of P is an elementary abelian group of order ph+1,
and is normal in P .

2. Let A ' (Z/pZ)h+1 be a maximal abelian subgroup of P . For any subgroup A = Ap '
(Z/pZ)h ⊂ A with Ap ∩ Z(P ) = {1} there exist subgroups A1, . . . , Ap−1 of A such that

A = Z(P ) ∪ A1 ∪ · · · ∪ Ap,
Ai ' (Z/pZ)h, Ai ∩ Z(P ) = {1}, Ai ∩ Aj = {1} if i 6= j.

3. Any two subgroups A of A of order ph which trivially intersect the center of P are
conjugate inside P .

Proof.

1. The statement that the maximal abelian subgroups A of P have order ph+1 is Theorem
III.13.7.(e) of [5].

2. A maximal abelian subgroup A is the inverse image of a maximal isotropic subspace of
W . Since P has exponent p, we conclude that A ' (Z/pZ)h+1 is elementary abelian.
Part 1 of Lemma 5.2 and the fact that A is the inverse image of a maximal isotropic
subspace of W imply that A is a normal subgroup of P . This proves part 1.

Let A ⊂ P be a maximal abelian subgroup. Without loss of generality, we may assume
that A corresponds to the maximal isotropic subspace generated by the basis elements
c1, . . . , ch of W as described above. In this case we have A = 〈ρ, σ1, . . . , σh〉 where σi
maps to ci under the map from part 2 of Lemma 5.2. Define

Ap := 〈σ1, . . . σh〉.

This is a subgroup of A of order ph such that Ap ∩ Z(P ) = {1}.
We define τ = σb,c′1+···+c′h , where b is some solution of the equation

bp − b = (c′1 + · · ·+ c′h)R(c′1 + · · ·+ c′h)

as specified in Remark 3.3. Let

Ai = τ iApτ
−i, i = 1, . . . , p− 1.

By part 2a of Proposition 2.1, Bc(X) is additive in c. This implies that

Bc′1+···+c′h(X) =
h∑
i=1

Bc′i
(X).

The choice of the basis ci, c
′
i of W , together with part 1 of Lemma 5.2 implies therefore

that
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τσiτ
−1 = ρ−ε(c

′
i,ci)σi = ρε(ci,c

′
i)σi = ρσi.

It follows that Ai ∩ Z(P ) = {1} and Ai ∩ Aj = {1} if i 6= j. By counting, we see that
each non-identity element of A is contained in exactly one Ai. This proves part 2.

3. Let A,A′ be two subgroups of A as in the statement of part 3. Without loss of
generality, we may assume that A = Ap = 〈σ1, . . . σh〉, as in the proof of part 2. Then

A′ = 〈ρj1σ1 . . . , ρjhσh〉 for suitable ji ∈ Fp. Define c =
∑h

i=1 jici ∈ W and choose b
with bp − b = Bc(c)/2. As in the proof of part 2 it follows that τ := σb,c satisfies
τAτ−1 = A′.

6 Decomposition of the Jacobian of CR

In this section we decompose the Jacobian of CR over the splitting field Fq of the polynomial
E. This decomposition allows us to reduce the calculation of the zeta function of CR over
Fq to that of a certain quotient curve. This quotient curve is computed in Section 7, and
Section 8 combines these results to compute the zeta function of CR over Fq.

The decomposition result (Proposition 6.3) we prove below is based on the following
general result of Kani–Rosen (Theorem B of [8]).

Theorem 6.1. Let C be a smooth projective curve defined over an algebraically closed field
k, and G a (finite) subgroup of Autk(C) such that G = H1∪H2∪. . .∪Ht, where the subgroups
Hi ≤ G satisfy Hi ∩Hj = {1} for i 6= j. Then we have the isogeny relation

Jac(C)t−1 × Jac(C/G)g ∼ Jac(C/H1)
h1 × · · · × Jac(C/Ht)

ht ,

where g = #G, hi = #Hi, and Jacn = Jac× · · · × Jac (n times).

We apply Theorem 6.1 to a maximal abelian subgroup A ⊂ P . Recall from part 1 of
Proposition 5.5 that A is an elementary abelian p-group of order ph+1 which contains the
center Z(P ) = 〈ρ〉 of P . Part 3 of Proposition 3.2 implies that all automorphisms in A are
defined over Fq.

Recall from part part 2 of Proposition 5.5 the existence of a decomposition

A = A0 ∪ A1 ∪ · · · ∪ Ap, (6.1)

where A0 = 〈ρ〉 is the center of P and for i 6= 0 the Ai are elementary abelian p-groups of
order ph.

Each group Ai defines a quotient curve CAi
:= CR/Ai. Since all automorphisms in Ai

are defined over Fq, it follows that the quotient curve CAi
together with the natural map

πAi
: CR → CAi

may also be defined over Fq. The following lemma implies that all curves
CAi

are isomorphic over Fq.

18



Lemma 6.2. Let A be a maximal abelian subgroup of P , and let A and A′ be two subgroups
of A of order ph which have trivial intersection with the center of P . Then the curves CR/A
and CR/A

′ are isomorphic over Fq.

Proof. Part 3 of Proposition 5.5 states that the subgroups A and A′ are conjugate inside P .
Namely, we have A′ = τAτ−1 for an explicit element τ ∈ P . The automorphism τ of CR
induces an isomorphism

τ : CR/A→ CR/A
′.

Since τ is defined over Fq, this isomorphism is defined over Fq as well.

We write JR := Jac(CR) for the Jacobian variety of CR. Since CR is defined over Fq
and has an Fq-rational point, the Jacobian variety JR is also defined over Fq. The map πAi

induces Fq-rational isogenies

πAi,∗ : JR → Jac(CAi
), π∗Ai

: Jac(CAi
)→ JR. (6.2)

The element

εAi
=

1

ph
π∗Ai
◦ πAi,∗ ∈ End0(JR) := End(JR)⊗Q

is an idempotent ([8], Section 2) and satisfies the property that εAi
(JR) is isogenous to

Jac(CAi
). Note that ph is the degree of the map πAi

.
In the following result we use these idempotents to decompose JR. The same strategy

was also used in [21, Section 10] in the case that p = 2. In that source, Van der Geer and
Van der Vlugt give a direct proof in their situation of the result of Kani–Rosen (Theorem
6.1) that we apply here.

Proposition 6.3. There exists an Fq-isogeny

JR ∼Fq Jac(CAp)p
h

.

Proof. We apply Theorem 6.1 to the decomposition (6.1) of a maximal abelian subgroup A
of P . This result shows the existence of a k-isogeny

JpR × Jac(CR/A)p
h+1 ∼k Jac(CA0)

p ×
p∏
i=1

Jac(CAi
)p

h

. (6.3)

The groups A and A0 contain the Artin–Schreier element ρ; hence the curves CR/A and
CA0 have genus zero (part 2 of Lemma 4.5). Therefore the Jacobians of these curves are
trivial and may be omitted from (6.3).

As before, let εAi
∈ End (JR) denote the idempotent corresponding to Ai. Theorem 2 of

[8] states that the isogeny relation from (6.3) is equivalent to the relation

p · 1 ∼ ph(

p∑
i=1

εAi
) ∈ End0(JR).
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Here, as defined on page 312 of [8], the notation a ∼ b means that χ(a) = χ(b) for all virtual
characters of End0(JR). Since End0(JR) is a Q-algebra, we may divide by p on both sides of
this relation. Applying Theorem 2 of [8] once more yields the isogeny relation

JR ∼k
p∏
i=1

Jac(CAi
)p

h−1

. (6.4)

We have already seen that the isogenies π∗Ai
and πAi,∗ are defined over Fq. It follows that

the isogeny (6.4) is defined over Fq as well (see also Remark 6 in Section 3 of [8]. Since the
curves CAi

, and hence also their Jacobians, are isomorphic (Lemma 6.2), the statement of
the proposition follows.

7 Quotients of CR by elementary abelian p-groups

We consider again a maximal abelian subgroup A ' (Z/pZ)h+1 of P and choose A ⊂ A with
A ' (Z/pZ)h and A ∩ Z(P ) = {1}. In this section we compute an Fq-model of the quotient
curve CA = CR/A. Lemma 6.2 implies that the Fq-isomorphism class of the quotient curve
does not depend on the choice of the subgroup A.

Since A ∩ Z(P ) = {1}, part 1 of Lemma 4.5 implies that the filtration of higher ramifi-
cation groups in the lower numbering of A is

A = G0 = G1 ) G2 = {1},

so the Riemann–Hurwitz formula yields

2g(CR)− 2 = ph(p− 1)− 2 = (2g(CA)− 2)ph + 2(ph − 1).

We conclude that g(CA) = (p− 1)/2.
Proposition 5.5 implies that the elements of A commute with ρ, since ρ ∈ Z(P ). It

follows that CA is an Artin–Schreier cover of the projective line branched at one point.
Artin–Schreier theory implies therefore that CA may be given by an Artin–Schreier equation

Y p − Y = fA(X),

where fA(X) is a polynomial of degree 2. Theorem 7.4 below implies that this polynomial
fA(X) is in fact of the form fA(X) = aAX

2 for an explicit constant aA. These curves are
all isomorphic over the algebraically closed field k, but not over Fq. The following lemma
describes the different Fq-models of the curves Y p − Y = eX2 for e ∈ Fq.

Lemma 7.1. For e ∈ Fq, define the curve De by the affine equation

Y p − Y = eX2. (7.1)

Two curves De1 and De2 as in (7.1) are isomorphic over Fq if and only if e1/e2 is the product
of a square in F∗q with an element of F∗p. In particular, over Fq, any two of these curves are
isomorphic.
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Proof. Let De1 and De2 be curves of the form (7.1). Suppose there exists an Fq-isomorphism
ϕ : De1 → De2 . We claim that there exists an Fq-isomorphism which sends ∞ ∈ De1 to
∞ ∈ De2 .

We first consider the case that p 6= 3, i.e., g(Dei) ≥ 2. In this case, Proposition 3.3 of
[11] states that there exists an automorphism σ of De1 over Fq such that ϕ ◦ σ sends the
point ∞ ∈ De1 to the point ∞ ∈ De2 . To prove the claim it suffices to show that σ may be
defined over Fq.

To prove this, we follow the proof of Proposition 3.3 of [11] and use the fact that ϕ maps
every point of De1 to a point of De2 with the same polar semigroup. Theorem 3.1.(a) of
[11] implies that the only points of De1 with the same polar semigroup as ∞ are the points
Qi := (0, i) with i ∈ Fp. It follows that ϕ−1(∞) is either ∞ or Qi for some i ∈ Fp. In the
former case, there is nothing to show. If ϕ−1(∞) = Qi, we may choose

σ(x, y) =

(
x

y(p+1)/2
,
iy − 1

y

)
.

Note that this is an automorphism of De1 which maps ∞ to Qi. Moreover, σ is defined over
the field of definition of De1 . This proves the claim for p > 3.

We prove the claim in the case that p = 3. In this case the curves Dei are elliptic curves.
The inverse ϕ−1 : De2 → De1 of ϕ is also defined over Fq. It follows that Q := ϕ−1(∞) ∈
De1(Fq) is Fq-rational. Then the translation τQ−∞ : P 7→ P +Q−∞ is defined over Fq and
sends the unique point ∞ ∈ De1 to Q. Precomposing ϕ with τQ−∞ gives an Fq-isomorphism
which sends ∞ ∈ De1 to ∞ ∈ De2 .

Therefore, without loss of generality we let ϕ : De1 → De2 be an Fq-isomorphism which
sends the unique point of De1 at∞ to the unique point of De2 at∞. Any such automorphism
can be written as ϕ(x, y) = (ν0x + ν1, ν2y + ν3) with νi ∈ Fq and ν2ν0 6= 0. The condition
that ϕ maps De1 to De2 is equivalent to

νp2 = ν2, ν2e1 = e2ν
2
0 , (7.2)

0 = 2e2ν0ν1, νp3 − ν3 = e2ν
2
1 . (7.3)

It follows that ν1 = 0 and ν2, ν3 ∈ Fp. The coefficient e2 is given by

e2 =
ν2e1
ν20

.

This proves the first assertion of the lemma. The second assertion is clear since any element
of F∗q is a square in F∗q.

We now compute an Fq-model of the curve CR/A for A ⊂ P an elementary abelian
subgroup of cardinality ph with A∩Z(P ) = {1}. We prove this by induction on h, following
Section 13 of [21]. The following proposition is the key step in the inductive argument. The
formula for the coordinate V of the quotient curve given in Proposition 13.5 of [21] contains
an error that has been corrected here. We recall that R(X) is an additive polynomial of
degree ph with leading coefficient ah ∈ Fpr ⊆ Fq.
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Proposition 7.2. Assume that h ≥ 1, and let

σ(x, y) := σb,c(x, y) = (x+ c, y + b+Bc(x))

be an automorphism of CR with c 6= 0 and b = Bc(c)/2. Then the quotient curve CR/〈σ〉 is
isomorphic over Fq to the smooth projective curve given by an affine equation

V p − V = f̃(U) = UR̃(U), (7.4)

where R̃(U) ∈ Fq[U ] is an additive polynomial of degree ph−1 with leading coefficient

ã =

{
ah
cp−1 if h 6= 1,
ah

2cp−1 if h = 1.

Proof. In the proof c is fixed, therefore we write B(X) for Bc(X). We define new coordinates

U = Xp − cp−1X, V = −Y + Ψ(X) = −Y + γX2 +
X

c
B(X), (7.5)

where γ is defined by

γ = −B(c)

2c2
.

One easily checks that U and V are invariant under σ. The invariance of V under σ is
equivalent to the property

Ψ(X + c)−Ψ(X) = B(X) + b.

Here we use the definition of b as b = B(c)/2. Since U and V generate a degree-p subfield of
the function field of CR and the automorphism σ has order p, U and V generate the function
field of the quotient curve CR/〈σ〉.

The Artin–Schreier automorphism ρ induces an automorphism ρ̃(U, V ) = (U, V − 1) on
the quotient curve CR/〈σ〉. It follows that the quotient curve is also given by an Artin–
Schreier equation, which we may write as

V p − V = −Y p + Y + Ψp(X)−Ψ(X) = −XR(X) + Ψp(X)−Ψ(X). (7.6)

It is clear that the right-hand side of (7.6) can be written as a polynomial f̃(U) in U , since
it is invariant under σ by construction. Since the constant term of Ψ is zero, the right-hand
side has a zero at X = 0, so f̃(U) ∈ UFq[U ].

Recall that part 1 of Proposition 3.2 established

B(X)p −B(X) = cR(X) +XR(c). (7.7)

This implies

XR(X) =
X(B(X)p −B(X))

c
− X2R(c)

c
.
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It follows that

−XR(X) + Ψp(X)−Ψ(X) =
B(X)p

cp
U + γpX2p +X2

(
R(c)

c
− γ
)
. (7.8)

Using (7.7) one computes

γpX2p +X2

(
R(c)

c
− γ
)

= γpU2 − B(c)p

cp+1
XU.

Define

Θ(X) =
B(X)p

cp
− B(c)p

cp+1
X.

Since Θ is invariant under σ, we may write Θ(X) = θ(U) as a polynomial in U . Note that
θ(0) = 0 since Θ(0) = 0. The additivity of the polynomials B and U in the variable X
imply that the polynomial θ is additive in the variable U . It follows that we may write
θ(U) =

∑h−1
i=0 µiU

pi . From (2.6), we deduce that the leading coefficient of θ is

µh−1 =
bph−1
cp

=
ah
cp−1

.

Altogether, we find
V p − V = f̃(U) = U (θ(U) + γpU) .

Setting R̃(U) := θ(U)+γpU , we see that R̃(U) is an additive polynomial in U . The statement
about the leading coefficient of R̃(U) follows from the definitions of θ and γ.

Remark 7.3. The above proposition is a corrected version of Proposition 13.5 of [21] that
extends the result for p = 2 in Proposition 9.1 of [21]. Van der Geer and Van der Vlugt
only indicate the generalization of their results to characteristic p ≥ 3. A crucial difference
between even and odd characteristic is that in characteristic 2 the extraspecial group P
contains elements of order 4. If the automorphism σb,c has order p = 2, then c satisfies
B(c) = 0. This considerably simplifies the computation in the proof of Proposition 7.2.

The distinction between elements of order 2 and 4 in P \ Z(G) in characteristic 2 yields
a decomposition of the polynomial E (Theorem 3.4 of [21]). There is no analogous result in
odd characteristic.

Recall from Section 5 that every maximal abelian subgroup A of P is the inverse image
of a maximal isotropic subspace A of W . For any such A, let {c1, . . . , ch} be a basis of A as
described prior to Proposition 5.5. Then every subgroup ofA of order ph that intersects Z(P )
trivially is generated by automorphisms of the form {σb1,c1 , . . . , σbh,ch} where bpi −bi = ciR(ci)
for 1 ≤ i ≤ h. In fact, there is a one-to-one correspondence between such subgroups of A
and sets of elements {b1, . . . , bh} satisfying bpi − bi = ciR(ci). By Remark 3.3 the elements in
all these sets are of the form bi = Bci(ci)/2 + βi with βi ∈ Fp.
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Theorem 7.4. Assume h ≥ 1. Let A be a maximal abelian subgroup of P . Any subgroup A ⊂
A of order ph that intersects the center Z(P ) of P trivially gives rise to an Fq-isomorphism
of the quotient curve CA onto the smooth projective curve given by the affine equation

Y p − Y = aAX
2.

Here
aA =

ah
2

∏
c∈A\{0}

c,

where we recall that ah is the leading coefficient of R and A is the maximal isotropic subspace
of W that is the image of A under the quotient map P → W .

Proof. We prove by induction on h that there exists a subgroup A ⊂ A with A ' (Z/pZ)h

and Z(P )∩A = {1} such that the quotient curve CA = CR/A is given over Fq by the equation
stated in the theorem. The statement of the theorem follows from this using Lemma 6.2.

For h = 0 there is nothing to prove.
Assume that h ≥ 1 and that the statement of the theorem holds for all additive polynomi-

als R(X) of degree ph−1. Fix a basis {c1, c2, . . . , ch} for the image of A in W . We may choose
bh = Bch(ch)/2. As in Section 5, we write σh(x, y) = σbh,ch(x, y) = (x+ ch, y + bh +Bch(x)).
Proposition 7.2 implies that the quotient curve Ch−1 := CR/〈σh〉 is given by an Artin–Schreier
equation

Y p
h−1 − Yh−1 = Xh−1Rh−1(Xh−1),

where Rh−1 is an additive polynomial of degree ph−1.
Since A is an abelian group, it follows that Ah−1 := A/〈σh〉 ' (Z/pZ)h is a maximal

abelian subgroup of the Sylow p-subgroup Ph−1 of Aut0(Ch−1). The definition of the coordi-
nate Xh−1 as Xp − cp−1h X in the proof of Proposition 7.2 implies that Ah−1 corresponds to
the maximal isotropic subspace 〈c1, . . . , ch−1〉 of Wh−1 := W/〈ch, c′h〉, where ci = cpi − c

p−1
h ci

and c′h ∈ W is an element with ε(ci, c
′
h) = δi,h as in Section 5.

The induction hypothesis implies that there exists a subgroup Ah−1 ⊂ Ah−1 with Ah−1 '
(Z/pZ)h−1 and Ah−1 ∩ Z(Ph−1) = {1} such that the quotient Ch−1/Ah−1 is given by

Y p
0 − Y0 = aAh−1

X2
0 .

We may choose bi satisfying bpi − bi = ciR(ci) for i = 1, . . . , h − 1 such that the images of
σb1,c1 , . . . , σbh−1,ch−1

in Ah−1 generate Ah−1 (Remark 3.3). Put σi = σbi,ci for i = 1, . . . , h− 1.
Then A := 〈σ1, . . . , σh〉 satisfies

CR/A 'Fq Ch−1/Ah−1.

This concludes the induction proof.
The statement about aA follows immediately from the formula for the leading coefficient

of the quotient curve given in Proposition 7.2.
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8 The zeta function of the curve CR

In this section, we describe the zeta function of the curve CR over the splitting field Fq of
the polynomial E(X) defined in (1.2).

Let C be a curve defined over a finite field Fps , and write Nn = #C(Fpsn) for the number
of points on C over any extension Fpsn of Fps . Recall that the zeta function of C, defined as

ZC(T ) = exp

(∑
n≥1

NnT
n

n

)
,

is a rational function with the following properties:

1. The zeta function may be written as

ZC(T ) =
LC,Fps

(T )

(1− T )(1− psT )
,

where LC,Fps
(T ) ∈ Z[T ] is a polynomial of degree 2g(C) with constant term 1.

2. Write L(T ) =
∏2g

i=1(1− αiT ) with αi ∈ C. After suitably ordering the αi, we have

α2g−i =
ps

αi
, |αi| = ps/2.

3. For each n, we have

Nn = #C(Fpsn) = 1 + psn −
2g∑
i=1

αni .

4. If

LC,Fps
(T ) =

2g∏
i=1

(1− αiT )

as above, then for any r ≥ 0, we have

LC,Fprs
(T ) =

2g∏
i=1

(1− αriT ).

The numerator LC,Fps
(T ) of the zeta function ZC(T ) over Fps is called the L-polynomial of

C/Fps . If the field is clear from the context, we sometimes omit it from the notation and
simply write LC(T ).

Recall that the Hasse–Weil bound asserts that

|#C(Fps)− (ps + 1)| ≤ 2ps/2g(C).
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A curve C/Fps is called maximal if #C(Fps) = ps + 1 + 2ps/2g(C) and minimal if #C(Fps) =
ps + 1 − 2ps/2g(C). Since the number of points on a curve must be an integer, if C is a
maximal curve, then s must be even. Furthermore, using properties 2 and 3 above, it is clear
that C is maximal if αj = −ps/2 for each 1 ≤ j ≤ 2g(C), and C is minimal if αj = ps/2 for
each 1 ≤ j ≤ 2g(C).

Assume that s is even and that Fps is an extension of Fq. In the notation of Proposition
2.6, we have ws = dimFp W = 2h (Corollary 2.3). Since the curve CR has genus ph(p− 1)/2,
Proposition 2.6 implies that CR is either maximal or minimal in this case. Moreover, one
easily sees that if either s is odd or Fps does not contain Fq, then CR is neither maximal nor
minimal. The following proposition asserts that this almost determines the zeta function of
CR over Fq. The statement is an extension to odd characteristic of Theorems 10.1 and 10.2
of [21]. Note that the statement for odd characteristic is simpler than that for characteristic
2.

Proposition 8.1. Let Fps be an extension of Fq, the splitting field of E(X). Write g =
ph(p− 1)/2 for the genus of CR.

1. If s is even, the L-polynomial of CR is

LCR
(T ) = (1± ps/2T )2g.

2. If s is odd, the L-polynomial of CR is

LCR
(T ) = (1± psT 2)g.

Proof.

1. Let α1, . . . , α2g be the reciprocal zeros of the L-polynomial of C over Fps , where we
order the αi such that αiα2g−i = ps.

We first assume that s is even. Since Fps is an extension of Fq, we have

N1 = #CR(Fps) = 1 + ps ± 2gps/2 = 1 + ps −
2g∑
i=1

αi.

Since |αi| = ps/2 we conclude that

α1 = · · · = α2g = ±ps/2.

This proves part 1.

2. We now assume that s is odd. Proposition 2.6 implies that

N1 = #CR(Fps) = 1 + ps = 1 + ps −
2g∑
i=1

αi. (8.1)
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Since the reciprocal roots of the L-polynomial of C over Fp2s are α2
j , we conclude from

part 1 that either α2
j = ps or α2

j = −ps for all j.

If α2
j = −ps for all j, then αj = ±ips/2, where i is a primitive 4th root of unity. It

follows that α2g−j = ps/αj = −αj. Hence

(1− αjT )(1− α2g−jT ) = 1 + psT 2.

Assume now that α2
j = ps for all j. In this case we have αj = ±ps/2 and α2g−j =

ps/αj = αj. Let m = #{1 ≤ j ≤ g | αj = ps/2}. It follows from (8.1) that

0 = #CR(Fps)− (ps + 1) = ps/2(−2m+ 2(g −m)).

We conclude that 2g = 4m, i.e., m = g/2 (in particular, g is even). For the L-
polynomial of CR over Fps we find

LCR
(T ) = (1− psT 2)g,

as claimed in part 2.

Remark 8.2.

1. The proof of part 2 of Proposition 8.1 shows that the case LCR
(T ) = (1− psT 2)g can

only occur when g is even, i.e., if p ≡ 1 (mod 4).

2. Assume that s is even. Then αj = ps/2 or αj = −ps/2 for all 1 ≤ j ≤ 2g, and therefore
CR is either minimal or maximal. If CR is minimal over Fps , each αj = ps/2. The
curve CR therefore remains minimal over each extension field Fpsf . If CR is maximal
over Fps , each αj = −ps/2. The reciprocal roots of the L-polynomial over Fpsf are

αfj = (−1)fpsf/2. We conclude that CR is maximal over Fpsf if f is odd and minimal
if f is even.

To determine the zeta function of CR, it remains to decide when the different cases occur.
The following result, which is an immediate corollary of Proposition 6.3, reduces this problem
to the case h = 0.

Corollary 8.3. Let A ' (Z/pZ)h ⊂ P be a subgroup with A ∩ Z(P ) = {0}. Write CA =
CR/A. Then

LCR,Fq(T ) = LCA,Fq
(T )p

h

.

Proof. This is an immediate consequence of Proposition 6.3, since abelian varieties which
are isogenous over Fq have the same zeta function over Fq. This follows for example from
the cohomological description of the zeta function in Section 1 of [9].
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Recall from Theorem 7.4 that the curve CA from Corollary 8.3 is a curve of genus (p−1)/2
given by an affine equation of the form

Y p − Y = aX2,

for some a ∈ F∗q. This corresponds to the case h = 0. All curves of this form are isomorphic

over Fq, and the different Fq-models are described in Lemma 7.1. The next result determines
the L-polynomials of the curves CA. In the literature one finds many papers discussing the
zeta function of similar curves using Gauss sums (for example [3], [9], [23].) We give a
self-contained treatment here based on the results of Section 2.

Theorem 8.4. Consider the curve CR over some extension of Fq and put g = g(CR). For
h ≥ 1 we put a = aA with aA as given in Theorem 7.4 for some choice of A. For h = 0 we
let a = ah be the leading coefficient of R.

1. If p ≡ 1 (mod 4), then the L-polynomial of CR over Fps is given by

LCR,Fps
(T ) =


(1− psT 2)g if s is odd,

(1− ps/2T )2g if s is even and a is a square in F∗ps ,
(1 + ps/2T )2g if s is even and a is a nonsquare in F∗ps .

2. If p ≡ 3 (mod 4), then the L-polynomial of CR over Fps is given by

LCR,Fps
(T ) =



(1 + psT 2)g if s is odd,

(1− ps/2T )2g if s ≡ 0 (mod 4) and a is a square in F∗ps ,
(1 + ps/2T )2g if s ≡ 0 (mod 4) and a is a nonsquare in F∗ps ,
(1 + ps/2T )2g if s ≡ 2 (mod 4) and a is a square in F∗ps ,
(1− ps/2T )2g if s ≡ 2 (mod 4) and a is a nonsquare in F∗ps .

Proof. Corollary 8.3 implies that it suffices to consider the case h = 0. To prove the theorem
we may therefore assume that R(X) = aX. We label the corresponding curve Da as we do
in Lemma 7.1.

Case 1: The element a is a square in F∗ps .
Then Lemma 7.1 implies that Da is isomorphic over Fq to the curve D1 given by the

affine equation Y p − Y = X2. Since D1 is defined over Fp, we compute its L-polynomial
over Fp. The argument that we use here proceeds in the same manner as in the proof of
Proposition 2.6. However, since both the polynomial R(X) and the field are very simple, we
do not need to consider the quadric Q considered in that proof explicitly.

As in the proof of Proposition 8.1, it suffices to determine the number N2 of Fp2-rational
points of the curve D1. We have p+1 points with x ∈ {0,∞}. As in the proof of Proposition
2.6, the Fp2-points with x 6= 0,∞ correspond to squares z = x2 with TrFp2/Fp(z) = 0. Every

such element z yields exactly 2p rational points. Since TrFp2/Fp(z) = z + zp, the nonzero
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elements of trace zero are exactly the elements with zp−1 = −1. Choosing an element ζ ∈ F∗p2
of order 2(p− 1), we conclude that the nonzero elements with trace zero are

ker(TrFp2/Fp) \ {0} = {ζ2j+1 | j = 0, . . . , p− 2}.

First suppose that p ≡ 3 (mod 4). Then all the elements of ker(TrFp2/Fp) are squares in Fp2 ,
so

#D1(Fp2) = 1 + p+ (p− 1)2p = 1 + p2 + (p− 1)p.

As in the proof of Proposition 8.1 it follows that αj = ±ip1/2 = −α2g−j for 1 ≤ j ≤ g after
suitable relabeling. If s is even then αsj = αs2g−j = isps/2 and

(1− αsjT )(1− αs2g−jT ) = 1− 2isps/2T + psT 2 =

{
(1− ps/2T )2 if s ≡ 0 (mod 4),

(1 + ps/2T )2 if s ≡ 2 (mod 4).

If s is odd then αsj = ±isps/2 = −αs2g−j, and therefore

(1− αsjT )(1− αs2g−jT ) = 1 + psT 2.

Now assume that p ≡ 1 (mod 4). Then none of the elements of ker(TrFp2/Fp) are squares
in Fp2 , and we conclude that

#D1(Fp2) = 1 + p = 1 + p2 − (p− 1)p.

Again as in the proof of Proposition 8.1 it follows that, up to relabeling, αj = ps/2 = α2g−j
for 1 ≤ j ≤ g/2, and αj = −ps/2 = α2g−j for g/2 + 1 ≤ j ≤ g. (Note that g is even since
p ≡ 1 (mod 4).) We may therefore relabel again to ensure that αj = ps/2 = −α2g−j, for
1 ≤ j ≤ g. With this new labeling, if s is even, then αsj = αs2g−j = ps/2, and

(1− αsjT )(1− αsj+g/2T ) = (1− ps/2T )2,

and if s is odd then αsj = ps/2 = −α2g−j and

(1− αsjT )(1− αsj+g/2T ) = (1− ps/2T )(1 + ps/2T ) = (1− psT 2).

This concludes Case 1.

Case 2: The element a is a nonsquare in F∗ps and s is odd.

Then the set {aβ2 : β ∈ F∗ps} contains ps−1
2

distinct elements, all of which are nonsquares.
As a consequence, this set contains all nonsquares of Fps . For s odd, the nonsquares in F∗p are
also nonsquares in F∗ps , and therefore the set {aβ2 : β ∈ F∗ps} contains an element in F∗p. (In
fact, this set contains all the nonsquares in Fp.) Lemma 7.1 now implies that the curve Da

is isomorphic over Fq to the curve D1, and the desired result follows therefore from Case 1.

Case 3: The element a is a nonsquare in F∗ps and s is even.
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Here, we consider M := ker(TrFps/Fp) = {z ∈ Fps | TrFps/Fp(z) = 0}. Since the trace is
surjective and Fp-linear, the cardinality of M is ps−1. We may write M as a disjoint union

M = {0} ∪M sq ∪Mnsq,

where M sq (resp. Mnsq) are the elements of M \ {0} which are squares (resp. nonsquares) in
F∗ps .

As in the proof of Case 1 we have

#D1(Fps) = 1 + p+ #M sq · 2p,

and a similar argument gives

#Da(Fps) = 1 + p+ #Mnsq · 2p.

From the expression for #D1(Fps) computed in Case 1, it follows that

#M sq =

{
ps−1−1

2
+ (p−1)

2
p(s−2)/2 if p ≡ 3 (mod 4) and s ≡ 2 (mod 4),

ps−1−1
2
− (p−1)

2
p(s−2)/2 if p ≡ 1 (mod 4) or s ≡ 0 (mod 4).

Since #Mnsq = #M − 1−#M sq = ps−1 − 1−#M sq, we conclude that

#Da(Fps) =

{
1 + ps − (p− 1)ps/2 if p ≡ 3 (mod 4) and s ≡ 2 (mod 4),

1 + ps + (p− 1)ps/2 if p ≡ 1 (mod 4) or s ≡ 0 (mod 4).

The expressions for the L-polynomial now follow as in the previous cases.

We finish this section by proving that all curves CR are supersingular. This result is not
new. Our proof just adds some details to Theorem 13.7 in [21]. An alternative proof is given
by Blache ([1], Corollary 3.7 (ii)).

Proposition 8.5. The curve CR is supersingular, i.e., its Jacobian is isogenous over k = Fq
to a product of supersingular elliptic curves.

Proof. The curve CR is supersingular if and only if all the slopes of the Newton polygon of
the L-polynomial are 1/2. (This follows for example from [19], Theorem 2.) The statement
of the proposition follows therefore from Theorem 8.4 .

The reasoning of Van der Geer and Van der Vlugt for Theorem 13.7 of [21] is slightly
different, since they do not compute the L-polynomial of CR over Fq. They argue that the
Jacobian variety JR of CR is isogenous over k to ph copies of the Jacobian of the curve D1

with equation Y p − Y = X2. (This is a weaker version of Proposition 6.3.) They then use
the fact that the curve D1 is supersingular.

30



9 Examples

By work of Ihara [6], Stichtenoth and Xing [17], and Fuhrmann and Torres [4], we know that
for q a power of a prime, a curve C which is maximal over Fq2 satisfies

g(C) ∈
[
0,

(q − 1)2

4

]
∪
{
q(q − 1)

2

}
.

Moreover, the Hermite curves are the only maximal curves of genus q(q−1)
2

([13]).
Recall from Section 8 that a curve C is maximal over Fp2s if and only if it L-polynomial

satisfies LC,Fp2s
= (1 + p2sT )2g(C). In our setting, Theorem 8.4 shows that for a curve CR

of the type considered in this paper and a defined as in Theorem 8.4, if Fps contains the
splitting field Fq of E(X), then CR is maximal over Fps if and only if one of the following
holds:

• s is even, a is a nonsquare in F∗q, and p ≡ 1 (mod 4),

• s ≡ 0 (mod 4), a is a nonsquare in F∗q, and p ≡ 3 (mod 4),

• s ≡ 2 (mod 4), a is a square in F∗q, and p ≡ 3 (mod 4).

In each case the negation of the condition on a guarantees that CR is a minimal curve over
Fps .

In light of these facts, the only difficulty in generating examples of maximal and minimal
curves lies in computing suitable elements a. In this section we present certain cases in which
such a can be computed. We start with a discussion of the case h = 0, and then turn our
attention to R(X) = Xph . At the end we briefly investigate isomorphisms between certain
curves CR and curves with defining equations

Y p + Y = Xph+1.

Throughout this section, we let Hp denote the Hermite curve which is defined by the affine
equation

Y p + Y = Xp+1. (9.1)

As mentioned above, this is a maximal curve over Fp2 . The curve Y p +Y = X2 is a quotient
of the Hermite curve Hp, and therefore this curve is maximal over Fp2 . The following lemma
determines when the twists

Y p − Y = aX2

of this curve are maximal.

Lemma 9.1. Let R(X) = aX ∈ Fp2s [X]. Then CR is maximal over Fp2s if and only if one
of the following conditions holds:

1. p ≡ 1 (mod 4) and a ∈ F∗p2s is a nonsquare,
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2. p ≡ 3 (mod 4), s is even, and a ∈ F∗p2s is a nonsquare,

3. p ≡ 3 (mod 4), s is odd, and a ∈ F∗p2s is a square.

Proof. In this case we have E(X) = 2aX, hence Fp2s automatically contains the splitting
field of E. The lemma therefore follows from Theorem 8.4.

Remark 9.2. The database manYPoints ([20]) compiles records of curves with many points.
The following two maximal curves fall in the range of genus and cardinality covered in the
database. However, in both cases there is as yet no explicit example of a maximal curve of
this genus over this field in the database.

1. In the case where h = 0, p = 11 and s = 4, let a ∈ F∗114 be a nonsquare. Then the
curve

Y 11 − Y = aX2

is maximal over F114 and of genus 5.

2. In the case where h = 0, p = 19 and s = 4, let a ∈ F194 be a nonsquare. Then the
curve

Y 19 − Y = aX2

is maximal over F194 and of genus 9.

The following proposition gives an example of a class of maximal curves with small genus
compared to the size of their field of definition, in contrast to the Hermite curves which have
large genus. A similar result for p = 2 can be found in Theorem 7.4 of [21].

Proposition 9.3. Let h ≥ 1.

1. Let R(X) = Xph. Then E(X) = Xp2h + X, which has splitting field Fq = Fp4h. The
curve CR is minimal over Fq.

2. Let ah ∈ F∗
p2h

be an element with ap
h−1
h = −1 and define R(X) = ahX

ph. Then

E(X) = ap
h

h (Xp2h −X), which has splitting field Fq = Fp2h. The curve CR is maximal
over Fq.

Proof. We first prove the statement about the splitting field of E(X) for both cases. Consider
the additive polynomial R(X) = ahX

ph ∈ Fps [X] with h ≥ 1. Then (1.2) shows that

E(X) = ap
h

h X
p2h + ahX.

If ah = 1, then E has splitting field Fq = Fp4h . If ah ∈ F∗
p2h

satisfies ap
h−1
h = −1, then

E(X) = ap
h

h (Xp2h −X), which has splitting field Fq = Fp2h . In both cases, we conclude from
the explicit expression of E that

W = {c ∈ Fp | cp
2h

= −a1−p
h

h c}.
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For every c ∈ W , the formulas (2.4) and (2.5) imply that

Bc(X) = −
h−1∑
i=0

ap
i

h c
ph+i

Xpi .

We first consider the case that ah = 1. Choose an element c ∈ W \ {0}, i.e., cp
2h

= −c, and
define

A = {cζ | ζ ∈ Fph} ⊂ W.

For any two ζj, ζk in Fph , we have

Bcζj(cζk) = −
h−1∑
i=0

ζp
h+i

j cp
h+i+piζp

i

k = −
h−1∑
i=0

ζp
i

j c
ph+i+piζp

h+i

k = Bcζk(cζj),

since ζp
h

= ζ for any ζ ∈ Fph . Therefore the pairing from part 1 of Lemma 5.2 satisfies

ε(cζj, cζk) = Bcζj(cζk)−Bcζk(cζj) = 0 for any pair (cζj, cζk) ∈ A
2
.

We conclude that A ⊂ W is a maximal isotropic subspace. Write A ⊂ P for the correspond-
ing maximal abelian subgroup of P . Recall the constant from Theorem 7.4,

aA =
ah
2

∏
γ∈A\{0}

γ.

Here the leading coefficient ah of R(X) is 1. The definition of A implies that∏
γ∈A\{0}

γ = cp
h−1

∏
ζ∈F∗

ph

ζ = −cph−1.

We conclude that aA = −cph−1/2 is a square in F∗q, since −1/2 is a square in F∗p2 ⊂ F∗q.
Theorem 8.4 now yields

LCR,Fq(T ) = (1−√qT )2g.

It follows that CR is minimal over Fq. This proves part 1.

We now assume that ah ∈ F∗
p2h

satisfies ap
h

h = −ah. In this case the splitting field of

E(X) is Fq = Fp2h as shown earlier. Choose a primitive (p2h − 1)-st root of unity ζ. Then

we may write ah = ζ(2j+1)(ph+1)/2 for some j. It follows that ah ∈ F∗q is a square if and only
if (ph + 1)/2 is even. This is equivalent to p ≡ 3 (mod 4) and h odd.

We choose A = Fph ⊂ W = Fp2h . For every c, c′ ∈ A, we have

Bc(c
′) = −

h−1∑
i=0

(ahcc
′)p

i

= Bc′(c).
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As in the proof of part 1, we conclude that A is a maximal isotropic subspace for the pairing
ε from part 1 of Lemma 5.2. Since ∏

c∈A\{0}

c = −1,

we conclude that aA is equivalent to ah modulo squares in F∗q. (The argument is similar to
that in the proof of part 1.) We conclude that aA is a square in F∗q if and only of p ≡ 3
(mod 4) and h is odd. Theorem 8.4 implies that CR is a maximal curve over Fq in each of
these cases. This proves part 2.

Remark 9.4. In their follow-up paper [22] to [21], Van der Geer and Van der Vlugt con-
structed further examples of maximal curves as a fiber product of the curves CR. We have
not considered this construction in the case of odd characteristic. We leave this as a subject
for future research.

Example 9.5.

1. We consider the Hermite curve Hp given in (9.1), and the curve CR given by

Y p − Y = Xp+1.

We claim that the curves Hp and CR are not isomorphic over Fp2 . To see this, we show
that #CR(Fp2) = 1 + p 6= 1 + p3 = #Hp(Fp2). This clearly implies that the two curves
are not isomorphic over Fp2 .
We note that

ψ : F∗p2 → F∗p2 , x 7→ x1+p

is the restriction of the norm on Fp2/Fp, so the image of ψ is F∗p. It follows that

TrFp2/Fp(x1+p) = 2x1+p 6= 0 for all x ∈ F∗p2 .

We conclude that the Fp2-rational points of CR are the p points with x = 0 together
with the unique point ∞. This proves the claim. (Exercise 6.7 in [16] asks to prove
that Hp and CR are isomorphic over Fp2 if p ≡ 1 (mod 4). The above calculation shows
that this does not hold.)

However, the Hermite curve Hp is isomorphic over Fp2 to the curve given by

CR′ : Y p − Y = a1X
p+1,

where a1 ∈ Fp2 satisfies ap−11 = −1. The isomorphism is given by ψ : CR′ → Hp, (x, y) 7→
(x, ap1y). This conforms with part 2 of Proposition 9.3.

2. Let ah ∈ F∗
p2h

be an element with ap
h

h = −ah as in part 2 of Proposition 9.3. Write

R(X) = ahX
ph . Then ψ : (x, y) 7→ (x, ap

2h−1

h y) defines an isomorphism between CR and
the curve given by

Y p + Y = Xph+1.

Part 2 of Proposition 9.3 therefore implies that this curve is maximal over Fp2h . This
can also be shown directly, for example using Proposition 6.4.1 of [16].
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