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Abstract

We study the inverse Jacobian problem for the case of Picard curves over C. More precisely, we
elaborate on an algorithm that, given a small period matrix Ω ∈ C3×3 corresponding to a principally
polarized abelian threefold equipped with an automorphism of order 3, returns a Legendre–Rosenhain
equation for a Picard curve with Jacobian isomorphic to the given abelian variety.

Our method corrects a formula obtained by Koike–Weng in [6] which is based on a theorem of Siegel.
As a result, we apply the algorithm to obtain (numerically) all the isomorphism classes of Picard curves
with maximal complex multiplication attached to the sextic CM-fields with class number at most 4. In
particular, we obtain (conjecturally) the complete list of CM Picard curves defined over Q.

In the appendix, Vincent gives a correction to the generalization of Takase?s formula for the inverse
Jacobian problem for hyperelliptic curves given in [1].

1 Introduction

Let J be the map from the set Mg of isomorphism classes of algebraic curves of genus g defined over C
to the set Ag of isomorphism classes of complex principally polarized abelian varieties of dimension g.
In this context, the inverse Jacobian problem consists of identifying the preimage via J of the class of
a given principally polarized abelian variety, if it exists. This is a classic result in the case of curves of
genus 1, and has also been solved for curves of genus 2 [13, 22] and genus 3 [1, 3, 6, 20, 24, 25]. Note
that in all these cases, the map J is a bijection.

In this paper we present an inverse Jacobian algorithm for the family of Picard curves. This was
initially done by Koike and Weng in [6], but their exposition presents some gaps and mistakes that we
fix here.

In Section 2 we give a formula to approximate the x-coordinates of the affine branch points of a
Picard curve in terms of theta constants of its Jacobian, see Theorem 2.5. The given formula differs
from the result in [6] by a third root of unity, see Remark 2.6.

In Section 3 we first characterize the image under J of this family of curves, and then develop the
algorithm that takes the Jacobian of a Picard curve C and returns a Legendre–Rosenhain equation
for C, see Algorithm 3.6. The main step of the algorithm is applying the formula of Theorem 2.5, so we
first identify the objects needed to apply said formula, mainly the Riemann constant and the images
by the Abel-Jacobi map of the affine branch points. Our algorithm makes the process of identifying
these points explicit in Theorem 3.4, see Remark 3.5 for a comparison with the approach of [6].

Our correction of the algorithm allows us to re-obtain the results of [6] and extend the list of maximal
CM Picard curves, that is, Picard curves such that their Jacobians have endomorphism ring isomorphic
to the maximal order of a sextic CM number field K. We obtain twenty-three new curves, displayed in
Section 4, among which we include all maximal CM Picard curves defined over Q. The corresponding
CM-fields are collected from [11]. The computations have been performed using SageMath [21], and
an implementation can be found at [18].

In the appendix, Vincent applies the tools introduced in Section 2 to correct a sign in the general-
ization of Takase’s formula for the inverse Jacobian problem for hyperelliptic curves, given in a previous
article [1].

The present paper is an extension and clarification of our earlier work [7] to include further im-
provements of the algorithm, such as Theorem 3.4.

1

http://arxiv.org/abs/1611.02582v2


Acknowledgements

The authors would like to thank Marco Streng and Christelle Vincent for useful discussions.

2 A Thomae-like formula for Picard curves

Let C be a Picard curve defined over C, that is, a genus-3 smooth, plane, projective curve given by the
affine equation y3 = f(x) where f is a polynomial of degree 4. The curve C has an automorphism ρ
of order 3 given by (x, y) 7→ (x, z3y) with z3 = exp

(
2πi
3

)
. This automorphism fixes the affine branch

points (t, 0) with f(t) = 0. The curve C has a unique point at infinity, with projective coordinates
(0 : 1 : 0), which is also fixed by the automorphism ρ.

Up to isomorphism, we can (and do) assume that C is given by a Legendre–Rosenhain equation

y3 = x(x − 1)(x− λ)(x − µ). (1)

Following the literature, for example [2, Section 11.1], we define the Jacobian of C as J(C) =
H0(ωC)

∗/H1(C,Z), and for ω = (ω1, . . . , ωg) a basis of H0(ωC) and the base point P∞ = (0 : 1 : 0) we
define the Abel-Jacobi map

α : C → J(C),

Q 7→

∫ Q

P∞

ω.

Choosing a symplectic basis of H1(C,Z) gives rise to the isomorphism J(C) ≃ C3/ΩZ3+Z3, where
Ω is a matrix in the Siegel upper half-space H3 = {Z ∈ C3×3 : Z = Zt, Im(Z) > 0}. We say that Ω is
a (small) period matrix for C.

The following two classical theorems, due to Riemann and Siegel respectively, deal with the zero
locus of the Riemann theta functions and the values of a function of an algebraic curve on non-special
divisors. Recall that the Riemann theta function θ : Cg ×Hg → C is given by

θ(z,Ω) =
∑

n∈Zg

exp(πintΩn+ 2πintz),

and that a non-special divisor D is a divisor with ℓ(K −D) = 0 for K a canonical divisor of C.

Theorem 2.1 (Riemann’s Vanishing Theorem, see [9, Corollary 3.6]). Let C be a curve defined over C
of genus g, let J(C) be the Jacobian of C with period matrix Ω ∈ Hg and let α be an Abel-Jacobi
map of C. There is an element ∆ ∈ J(C), called a Riemann constant with respect to α, such that the
function θ( · ,Ω) vanishes at z ∈ Cg if and only if there exist Q1, . . . , Qg−1 ∈ C that satisfy

z ≡ α(Q1 + · · ·+Qg−1)−∆ mod ΩZg + Zg.

The choice of a base point determines uniquely the Riemann constant ∆, as shown by Mumford in
Theorem 3.10 and Corollary 3.11 of [9].

Theorem 2.2 (Theorem 11.3 in Siegel [17]). Let C be a curve of genus g over C, and let φ be a
function on C with

div(φ) =

m∑

i=1

Ai −

m∑

i=1

Bi.

Let P ∈ C and let ω be a basis of H0(ωC) for which the Jacobian J(C) has period matrix Ω ∈ Hg.
Let ∆ be the Riemann constant with respect to the Abel-Jacobi map α with base point P .

Choose paths from the base point P to Ai and Bi that satisfy

m∑

i=1

∫ Ai

P

ω =

m∑

i=1

∫ Bi

P

ω.

Then, given an effective non-special divisor D = P1+ · · ·+Pg of degree g that satisfies Pj /∈ {Ai, Bi :
1 ≤ i ≤ m}, one has

φ(D) := φ(P1) . . . φ(Pg) = E

m∏

i=1

θ(
∑g

j=1

∫ Pj

P
ω −

∫ Ai

P
ω −∆,Ω)

θ(
∑g

j=1

∫ Pj

P
ω −

∫ Bi

P
ω −∆,Ω)

, (2)
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where E ∈ C× is independent of D, and the integrals from P to Pj take the same paths both in the
numerator and the denominator.

Observe that in (2) we are evaluating the Riemann theta functions at points of the Jacobian.
We shall need a version of Theorem 2.2 in terms of Riemann theta constants. Given x = (x1, x2)

with xi ∈ Rg, the Riemann theta constant (with characteristic x) is the function θ[x] : Hg → C given
by

θ

[
x1

x2

]
(Ω) = exp(πixt

1Ωx1 + 2πixt
1x2)θ(Ωx1 + x2,Ω) . (3)

We use the following two elementary properties of the Riemann theta constants: They are even in
x, that is,

θ[x](Ω) = θ[−x](Ω) , (4)

and they are quasi-periodic in x, that is, for m = (m1,m2) ∈ Z2g one has

θ[x +m](Ω) = exp(2πix1m2)θ[x](Ω) . (5)

Due to the quasi-periodicity of the Riemann theta constants, we must fix representatives in R2g for
the points of the Jacobian: Throughout, we consider the composition of the maps

C
α

// J(C)
·

// R2g/Z2g ·̃
// [0, 1)2g (6)

where α is the Abel-Jacobi map, the map · identifies J(C) with R2g/Z2g via Ωx1 + x2 7→ (x1, x2) and

·̃ maps a class in R2g/Z2g to its representative with entries in [0, 1). For P ∈ C we write P̃ instead of

α̃(P ); and in the case of a divisor D =
∑

nPP , we define D̃ :=
∑

nP P̃ ∈ R2g. Note that with this

definition for most divisors D we get that D̃ and α̃(D) are different.

With the definitions above, one can rewrite Theorem 2.2 in terms of Riemann theta constants as
follows:

Corollary 2.3. With the notation of Theorem 2.2, let ai (resp. bi) be the element in R2g that satisfies∫ Ai

P
ω = Ω(ai)1 + (ai)2 (resp.

∫ Bi

P
ω = Ω(bi)1 + (bi)2). We have

φ(D) = E′
m∏

i=1

θ
[
D̃ − ai − ∆̃

]
(Ω)

θ
[
D̃ − bi − ∆̃

]
(Ω)

,

where E′ ∈ C× is also independent of D.

Proof. Observe that the exponential factor in (3) for Riemann theta constants can be written as
exp(πiB(x, x)) where B is the symmetric bilinear form given by

B(u, v) = ut

(
Ω idg
idg 0

)
v.

Let Q(u) = B(u, u) and let c = D̃ − ∆̃. For j = 1, . . . , g, let xj = P̃j and choose a path from P to Pj

that satisfies
∫ Pj

P
ω = Ω(xj)1 + (xj)2 ∈ Cg.

Let E′ ∈ C× be defined by

E

m∏

i=1

θ
((∑g

j=1

∫ Pj

P
ω
)
−
∫ Ai

P
ω −∆,Ω

)

θ
((∑g

j=1

∫ Pj

P
ω
)
−
∫ Bi

P
ω −∆,Ω

) = E′
m∏

i=1

θ
[
D̃ − ai − ∆̃

]
(Ω)

θ
[
D̃ − bi − ∆̃

]
(Ω)

.

We want to prove that E′ does not depend on D. By (3) we get

E

E′
= exp

(
πi

m∑

i=1

(Q(c− ai)−Q(c− bi))

)
,
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so it suffices to show that
∑m

i=1(Q(c− ai)−Q(c− bi)) does not depend on D. We have

m∑

i=1

(Q(c− ai)−Q(c− bi)) =

m∑

i=1

(Q(ai)−Q(bi)− 2B(c, ai − bi))

=

m∑

i=1

Q (ai)−

m∑

i=1

Q (bi)− 2B

(
c,

m∑

i=1

(ai − bi)

)
,

but we know
m∑

i=1

∫ Ai

P

ω =

m∑

i=1

∫ Bi

P

ω,

so in terms of characteristics we obtain
∑m

i=1(ai − bi) = 0 and then it follows that

m∑

i=1

(Q(c− ai)−Q(c− bi)) =
m∑

i=1

Q (ai)−
m∑

i=1

Q (bi)

does not depend on D.

Lemma 2.4. Let C be a Picard curve defined over C given by y3 = x(x−1)(x−λ)(x−µ), and consider
the branch points P0 = (0, 0), P1 = (1, 0), Pλ = (λ, 0), Pµ = (µ, 0), and P∞ at infinity. Let J(C) be the
Jacobian of C with period matrix Ω, let α be the Abel-Jacobi map with base point P∞, and let ∆ ∈ J(C)
be the associated Riemann constant.

Then, for every non-special divisor D = R1 +R2 +R3, we have

x(D) = E ε(D)

(
θ[D̃ − P̃0 − ∆̃](Ω)

θ[D̃ − ∆̃](Ω)

)3

,

where ε(D) = exp(6πi(D̃ − P̃0 − ∆̃)1(P̃0)2) and E ∈ C× is a constant independent of D.

Proof. Let ω be the basis of holomorphic differentials for which J(C) has period matrix Ω. The divisor
of the function x on C is div(x) = 3P0 − 3P∞, so in order to apply Corollary 2.3 for φ = x and
P = P∞, we choose three times the zero path from P∞ to itself, the path γ1 from P∞ to P0 that for
a1 = P̃0 satisfies ∫

γ1

ω = Ω(a1)1 + (a1)2 ∈ C3,

and paths γ2, γ3 from P∞ to P0 that satisfy

3∑

k=1

∫

γk

ω = 0 in C3. (7)

Let a2, a3 be the elements in R6 that satisfy
∫

γk

ω = Ω(ak)1 + (ak)2 for k = 2, 3.

Then, by Corollary 2.3, we have

φ(D) = E′
3∏

k=1

θ[D̃ − ak − ∆̃](Ω)

θ[D̃ − ∆̃](Ω)
(8)

for some constant E′ ∈ C× independent of D. Note that for k = 1, 2, 3 we have

P0 = (ak modZ6),

so the differences ai − aj for i 6= j are integer vectors. Applying the quasi-periodicity property (5),
equation (8) becomes

φ(D) = E′ exp(2πi(D̃ − P̃0 − ∆̃)1(a1 − a2 + a1 − a3)2) θ[D̃ − P̃0 − ∆̃](Ω)3

θ[D̃ − ∆̃](Ω)3
.

But it follows from (7) that the sum a1 + a2 + a3 is zero, so we obtain a1 − a2 + a1 − a3 = 3a1 = 3P̃0

and the statement follows.
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The final step is to choose the right non-special divisors.

Theorem 2.5. Let C be a Picard curve defined over C given by y3 = x(x − 1)(x − λ)(x − µ), and
consider the branch points P0 = (0, 0), P1 = (1, 0), Pλ = (λ, 0), Pµ = (µ, 0), and P∞ at infinity. Let
J(C) be the Jacobian of C with period matrix Ω, let α be the Abel-Jacobi map with base point P∞, and
let ∆ ∈ J(C) be the associated Riemann constant. Then, for η ∈ {λ, µ}, we have

η = εη

(
θ[P̃1 + 2P̃η − P̃0 − ∆̃](Ω)

θ[2P̃1 + P̃η − P̃0 − ∆̃](Ω)

)3

, (9)

where εη = exp(6πi((P̃η − P̃1)1(P̃0)2 + ∆̃1(3P̃1 + 3P̃η − 2∆̃)2)).

Proof. We apply Lemma 2.4 twice, to the divisors D1 = P1 + 2Pη and D2 = 2P1 + Pη, which Koike–
Weng prove that are non-special in [6, pg. 506]. Then, we get

η =
x(P1)x(Pη)

2

x(P1)2x(Pη)
=

E′ε(D1)

(
θ[P̃1 + 2P̃η − P̃0 − ∆̃](Ω)

θ[P̃1 + 2P̃η)− ∆̃](Ω)

)3

E′ε(D2)

(
θ[2P̃1 + P̃η − P̃0 − ∆̃](Ω)

θ[2P̃1 + P̃η − ∆̃](Ω)

)3

=
ε(D1)

ε(D2)

(
θ[P̃1 + 2P̃η − P̃0 − ∆̃](Ω)

θ[P̃1 + 2P̃η − ∆̃](Ω)

θ[2P̃1 + P̃η − ∆̃](Ω)

θ[2P̃1 + P̃η − P̃0 − ∆̃](Ω)

)3

.

(10)

Moreover, using the symmetry (4) and quasi-periodicity (5) of the Riemann theta constants we also
obtain

θ[D̃2 − ∆̃](Ω) = θ[−D̃2 + ∆̃](Ω)

= θ[D̃1 − ∆̃ + 2∆̃− 3P̃1 − 3P̃η)︸ ︷︷ ︸
∈Z6

](Ω)

= exp(2πi(D̃1 − ∆̃)1(2∆̃− 3P̃1 − 3P̃η)2))θ[D̃1 − ∆̃](Ω)

so that (10) becomes

η = εη ·

(
θ[P̃1 + 2P̃η − P̃0 − ∆̃](Ω)

θ[2P̃1 + P̃η − P̃0 − ∆̃](Ω)

)3

,

with

εη =
ε(D1)

ε(D2)
exp(2πi(D̃1 − ∆̃)1(2∆̃− 3P̃1 − 3P̃η)2)

3

=
exp(6πi(P̃1 + 2P̃η − P̃0 − ∆̃)1(P̃0)2)

exp(6πi(2P̃1 + P̃η − P̃0 − ∆̃)1(P̃0)2)
exp(6πi(D̃1 − ∆̃)1(2∆̃− 3P̃1 − 3P̃η)2)

= exp(6πi((P̃η − P̃1)1(P̃0)2 + ∆̃1(3P̃1 + 3P̃η − 2∆̃)2))

as desired.

Remark 2.6. Compare the above formula in Theorem 2.2 with the ones given in [6, Eq. 9]. The
formulas are the same as in (9) replacing εη by 1, hence in general they do not hold due to the absence
of the precise root of unity.

However, if we follow the original work by Picard [12, p. 131], then we obtain a particular form of the
period matrix Ω (see also Shiga [14, Proposition I-3]) for which it is always the case that ελ = εµ = 1.
In such case, the formulas in [6] hold.

5



3 The algorithm

In this section we explain how to use the formula in Theorem 2.5 to obtain an inverse Jacobian algorithm
for Picard curves, that is, an algorithm that, given the Jacobian of a Picard curve C, returns a model
of C.

The following result characterizes the Jacobian of a Picard curve based on work of Koike-Weng and
Estrada.

Proposition 3.1. Let X be a simple principally polarized abelian variety of dimension 3 defined over
an algebraically closed field k. If X has an automorphism ϕ of order 3, then we have that X is the
Jacobian of a Picard curve. Furthermore, let ρ be the curve automorphism ρ(x, y) = (x, z3y), and let
ρ∗ be the automorphism of the Jacobian that it induces. Then we get 〈ϕ〉 = 〈ρ∗〉.

Proof. By Oort-Ueno [10], since X is a simple principally polarized abelian variety of dimension ≤ 3
over an algebraically closed field, then it is the Jacobian of a curve. Let C be a curve with X ∼= J(C).

By Torelli’s Theorem, see Milne [8, Section 12], there is some non-trivial automorphism ν of C that
satisfies ϕ = ±ν∗. Then the automorphism ν4, which we call η, satisfies η∗ = (ν4)∗ = (±ν)4∗ = ϕ4 = ϕ,
hence by the uniqueness in Torelli’s Theorem we obtain that η has order 3.

Therefore, the degree of the map π : C → C/〈η〉 is also 3, and by the Riemann-Hurwitz formula
one obtains that C/〈η〉 has either genus 0 or 1. But X is simple, so the curve C/〈η〉 is isomorphic to
P1 and π has 5 ramification points.

Then k(C)/k(C/〈η〉) is a Kummer extension of degree 3, hence C is given by an equation of the form
y3 = h(x) where h has 4 different roots. By Lemma 7.3 in Estrada [4, Appendix I], we obtain a model
for C given by y3 = f(x) where f has degree 4 and distinct roots and η is either the automorphism ρ
given by (x, y) 7→ (x, z3y) or its square.

Remark 3.2. While the idea behind the proof is the same in Proposition 3.1 and in [6, Lemma 1],
the assumptions in [6] are in a way more restrictive, as Koike and Weng focus on maximal CM Picard
curves. Moreover, the proof in [6] has a gap, which is fixed exactly by our reference to Estrada [4,
Appendix I].

It follows from Proposition 3.1 that one can think of the input for this algorithm to be a period
matrix Ω ∈ H3 together with the rational representation of an automorphism of order 3. To give the
curve we will compute the values of λ and µ in a Legrendre-Rosenhain equation of the curve.

First we want to determine the points in C3/(Ω/Z3+Z3) that correspond to the Riemann constant
∆ and the image of the branch points via α. The former is given by the following result due to Koike
and Weng.

Proposition 3.3 (Koike–Weng [6, Lemma 10]). Let J(C) be the Jacobian of a Picard curve C, let
ρ∗ be the automorphism of J(C) induced by the curve automorphism ρ(x, y) = (x, z3y), and let N =(
α β
γ δ

)
∈ Sp(6,Z) be the transposed rational representation of ρ∗. Then, the Riemann constant

∆ ∈ J(C) is the unique 2-torsion point that satisfies

∆ = (N−1)t∆+
1

2

(
(γtδ)0
(αtβ)0

)
=: N [∆],

where X0 stands for the diagonal of the matrix X.

The following step is to identify the image under α of the branch points.

Theorem 3.4. Let J(C) be the Jacobian of a Picard curve C, let ρ∗ be the automorphism of J(C)
induced by the curve automorphism ρ(x, y) = (x, z3y). Let B be the set of affine branch points of C, let
α be the Abel-Jacobi map with base point P∞ = (0 : 1 : 0), let ∆ be the Riemann constant with respect
to α and define

Θ3 := {x ∈ J(C)[1 − ρ∗] : θ[x +∆](Ω) = 0} .

Then α(B) and −α(B) are the only subsets T ⊂ J(C) of four elements such that:

(i) the sum
∑

x∈T x is zero,

(ii) T is a set of generators of J(C)[1 − ρ∗], and

6



(iii) the set O(T ) := {
∑

x∈T axx : a ∈ Z4
≥0,
∑

x∈T ax ≤ 2} satisfies

O(T ) = Θ3.

Proof. We first show that α(B) and −α(B) satisfy (i)–(iii), and then we prove that these are the only
possibilities.

That α(B) satisfies (i) follows from div(y) =
∑

P∈B P − 4P∞. That α(B) satisfies (ii) is proven by
Koike and Weng in [6, Remark 8]. Next we prove that α(B) satisfies (iii). On the one hand, given
Q1, Q2 ∈ B∪{P∞} we have α(Q1+Q2) ∈ Θ3 by Riemann’s Vanishing Theorem 2.1, and since we have
α(P∞) = 0, this implies {

∑

P∈B

aPα(P ) : a ∈ ZB
≥0,

∑

P∈B

aP ≤ 2

}
⊆ Θ3.

To prove the opposite inclusion, let x ∈ Θ3. Since x satisfies θ[x + ∆](Ω) = 0, by Riemann’s
Vanishing Theorem 2.1 there exist Q1, Q2 ∈ C such that we have x = α(Q1 +Q2). Moreover, since x
is a (1 − ρ∗)-torsion point, we get

α(Q1 +Q2) = ρ∗(α(Q1 +Q2)) = α(ρ(Q1) + ρ(Q2)),

hence there exists a function h on C such that div(h) = ρ(Q1)+ρ(Q2)−Q1−Q2. Note now that a Picard
curve is non-hyperelliptic, since one checks that the canonical map is the embedding (x : y : 1) : C → P2.
Then we conclude that h is constant, since otherwise it has degree at most 2, hence the curve would
be hyperelliptic. Therefore we have ρ(Q1) + ρ(Q2) = Q1 +Q2, but since ρ has order 3, the cardinality
of the orbit of Qi has length 3 or 1, we obtain ρ(Qi) = Qi. Therefore Q1 and Q2 are branch points, so
the other inclusion holds.

It is clear that −α(B) satisfies (i) and (ii). To see that it satisfies (iii), it is enough to prove that Θ3 is
invariant under the map x 7→ −x. But this follows from the symmetry of the Riemann theta constants,
see (4).

Next we prove that α(B) and −α(B) are, in fact, all the subsets that satisfy (i)–(iii).
Let B denote an ordering of α(B). Given a sequence T = (t1, t2, t3, t4) in J(C)4 of distinct elements

such that the set {t1, t2, t3, t4} satisfies (i)–(iii), we define the map γ[T ] : F3
3 → J(C)[1 − ρ∗] given by

r 7→
∑3

i=1 riti. By Remark 8 in Koike–Weng [6] we have #J(C)[1 − ρ∗] ∼= (Z/3Z)3, thus it follows
from (i) and (ii) that γ[T ] is a bijection.

Consider the diagram

F3
3

M(T )
//

γ[T ]
%%❏

❏❏
❏❏

❏❏
❏❏

❏❏
F3
3

γ[B]
yytt
tt
tt
tt
tt
t

J(C)[1 − ρ∗]

where M(T ) is the unique invertible matrix in F3×3
3 that makes the diagram commutative. Note that

choosing a matrix M(T ) determines T uniquely.
Let e1, e2, e3 be the standard basis vectors of F3

3, and let e4 = −e1 − e2 − e3, so for i = 1, . . . , 4 we
have γ[T ](ei) = ti. Consider

O0 =

{
4∑

i=1

aiei : a ∈ Z4
≥0,

4∑

i=1

ai ≤ 2

}
⊂ F3

3.

One can check #O0 = 15, and moreover we have γ[T ](O0) = O({t1, t2, t3, t4}). If the set of elements
of T satisfies (iii), then we have

γ[T ](O0) = O({t1, t2, t3, t4}) = Θ3 = γ[B](O0),

and thus O0 is stable under M(T ).
We checked with SageMath [21] that there are exactly 48 invertible matrices in F3×3

3 that map O0 to
itself. Since a matrix M(T ) determines T uniquely, there are 48 sequences T ∈ J(C)4 that satisfy (i)–
(iii). However, if we vary σ in the symmetric group of 4 letters and s ∈ {±1}, then sσ(B) gives 48
sequences, which are different. We conclude that α(B) and −α(B) are the only subsets of J(C) with 4
elements that satisfy (i)–(iii).
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Remark 3.5. With Theorem 3.4, we make precise the idea hinted in Corollary 11 of Koike–Weng [6].
There, they claim the existence of a 4-element set that satisfies (i) and (ii), prove that α(B) does satisfy
(i) and (ii), and assume without further comments that when one finds such a set, it is α(B).

This is problematic not only because they disregard the case where the set is −α(B) but especially
because they do not consider (iii) at all, since there exist 4-element sets in J(C) that satisfy (i) and
(ii) which are not α(B) or even −α(B).

In fact, there are #GL3(F3) = 11232 possible sequences T ∈ J(C)4 that satisfy (i) and (ii), hence
the probability of finding one that corresponds to a permutation of B is 1/468 ≈ 0.002.

We now have all the tools to state the algorithm.

Algorithm 3.6

Input: A period matrix Ω ∈ H3 of the Jacobian of a Picard curve C, and the transposed rational repre-
sentation N ∈ Z6×6 of the automorphism of the Jacobian ρ∗ induced by the curve automorphism
ρ(x, y) = (x, z3y).

Output: The complex values λ and µ in a Legendre–Rosenhain equation y3 = x(x− 1)(x− λ)(x− µ)
for the Picard curve C.

Steps:

1. Let D be the unique solution of N [D] = D in 1
2Z

6/Z6.

2. Compute the set

Θ3 =

{
x ∈

1

3
Z6/Z6 : N tx = x and θ[x+D](Ω) = 0

}

of cardinality 15.

3. Let T = {t1, t2, t3, t4} ⊂ Θ3 be a 4-element set that satisfies

i.
∑4

i=1 t = 0,

ii. {t1, t2, t3} are linearly independent over Z/3Z, and

iii. {
∑4

i=1 aiti : (ai)i ∈ Z4
≥0,
∑4

i=1 ai ≤ 3} = Θ3.

4. Compute
ελ = exp(6πi((t̃3 − t̃2)1(t̃1)2 + (t̃2 + 2t̃3 − D̃)1(2D̃ − 3(t̃2 + t̃3))2)),

εµ = exp(6πi((t̃4 − t̃2)1(t̃1)2 + (t̃2 + 2t̃4 − D̃)1(2D̃ − 3(t̃2 + t̃4))2)),

and

λ = ελ

(
θ[t̃2 + 2t̃3 − t̃1 − D̃](Ω)

θ[2t̃2 + t̃3 − t̃1 − D̃](Ω)

)3

,

µ = εµ

(
θ[t̃2 + 2t̃4 − t̃1 − D̃](Ω)

θ[2t̃2 + t̃4 − t̃1 − D̃](Ω)

)3

.

5. Return λ and µ.

Remark 3.7. Algorithm 3.6 is a mathematical algorithm, but, because it involves infinite sums, com-
plex numbers and exponentials, it cannot be run on a Turing machine or a physical computer. To do so
one needs to truncate the sum on the Riemann theta constants, approximate complex numbers and keep
track of the error propagation. For implementation details, we refer the reader to [19, Section 1.5].

Proof of Algorithm 3.6. Let ∆ ∈ J(C) be the Riemann constant with respect to P∞ = (0 : 1 : 0) and
let B be the set of affine branch points of C. By Proposition 3.3, the point ∆ is the only one that
satisfies N [∆] = ∆ and is a 2-torsion point, that is, it satisfies ∆ ∈ 1

2Z
6/Z6. We conclude D = ∆.

By Theorem 3.4, the sequence (t1, t2, t3, t4) is an ordering of either α(B) or −α(B). In the former
case, the values λ, µ obtained in Step 4 are the x-coordinates of the affine branch points different
from (0, 0) and (0, 1). A quasi-periodicity argument similar to those in the proofs of Lemma 2.4 or
Theorem 2.5 yields that in the latter case the same holds too.
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4 Implementation details and CM examples

Assume that a Picard curve C has a model y3 = h(x), with h(x) a polynomial over a number field.
After numerically approximating the x-coordinates of the branch points of C with Algorithm 3.6, we
obtain a polynomial

f(x) = x(x− 1)(x− λ)(x − µ) ∈ C[x]

up to some precision, which gives an approximate model for the curve we seek.
Given the quartic polynomial

p(x) = x4 + g2x
2 + g3x+ g4 with g2 6= 0

we define the absolute invariants of p(x) as

j1 =
g23
g32

, j2 =
g4
g22

.

In order to find h(x) from f(x) (when possible), we compute the absolute invariants of C by
computing j1 and j2 for our approximation of the curve C. We then recognize j1 and j2 as algebraic
numbers and reconstruct h(x) from the exact absolute invariants, obtaining

y3 = h(x) = x4 + j1x
2 + j21x+ j21j2.

Note that in order to be able to recognize j1 and j2 as algebraic numbers we have to compute λ
and µ with enough precision.

One possible application for Algorithm 3.6 is to compute maximal CM Picard curves, that is, Picard
curves such that their Jacobians have an endomorphism ring isomorphic to the maximal order of a sextic
CM-field K. Since ρ∗ is an automorphism of order 3, the field K contains a primitive 3rd root of unity
ζ3 ∈ K. In fact, the field K is determined by a totally real cubic field K0 that satisfies K = K0(ζ3).

Van Wamelen [23] gives an algorithm that, given a CM-field K, lists all the isomorphism classes
of period matrices of principally polarized abelian varieties with complex multiplication by OK . This
method is based on the CM theory due to Shimura and Taniyama, see [15].

If we apply said method to a sextic CM-field containing a primitive third root of unity ζ3 ∈ K,
then we obtain a list of period matrices corresponding to principally polarized abelian threefolds with
CM by OK with an order-3 automorphism associated to ζ3 which, by Proposition 3.1, are Jacobians
of Picard curves. To then obtain the rational representation of the order-3 automorphism is a matter
of keeping track of the changes of basis throughout van Wamelen’s method, which completes the input
for our algorithm.

Using Algorithm 3.6 on the resulting list of pairs (Ω, N), we computed heuristic models of some
maximal CM Picard curves. In particular, the list below contains all maximal CM Picard curves whose
CM-field has class number h ≤ 4. We get the sextic fields from [11, Table 3], where the complete list
of all imaginary abelian sextic number fields with class number h ≤ 11 is given.

It follows from Kılıcer [5, Theorem 4.3.1] that our list also includes conjectural models for all Picard
curves defined over Q with maximal CM over C, see also [5, Table 3.1]. The curves (1)–(5) also appear
in [6, Section 6.1].

(1) y3 = x4 − x, with K0 defined by ν3 − 3ν − 1.

(2) y3 = x4 − 2 · 72 x2 + 23 · 72 x− 73, with K0 defined by ν3 − ν2 − 2ν + 1.

(3) y3 = x4 − 2 · 72 · 13 x2 + 23 · 5 · 13 · 47 x− 52 · 132 · 31, with K0 defined by ν3 − ν2 − 4ν − 1.

(4) y3 = x4 − 2 · 7 · 31 · 73 x2 + 211 · 31 · 47 x− 7 · 312 · 11593, with K0 defined by ν3 + ν2 − 10ν − 8.

(5) y3 = x4−2·7·432·223 x2+27 ·11·41·432·59 x−112·433 ·419·431, with K0 defined by ν3−ν2−14ν−8.

(6) y3 = x4 − 2 · 32 · 52 · 72 x2 + 29 · 72 · 71 x− 32 · 5 · 73 · 2621, with K0 defined by ν3 − 21ν − 28.

(7) y3 = x4− 22 ·32 ·72 ·37 x2+5 ·72 ·149 ·257 x− 2 ·32 ·52 ·73 ·2683, with K0 defined by ν3− 21ν+35.

(8) y3 = x4 − 2 · 32 · 52 · 7 · 11 · 13 x2 +27 · 11 · 13 · 59 · 149 x− 32 · 5 · 7 · 132 · 17 · 17669, with K0 defined
by ν3 − 39ν + 26.
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(9) For K0 defined by ν3 − ν2 − 6ν + 7, and w3 = 19,

y3 = x4 + (10w2 − 2w − 70)x2 + (96w2 − 7w − 496)x+ (235w2 − 215w− 1101).

(10) For K0 defined by ν3 − ν2 − 12ν − 11, and w3 = 37,

y3 = x4 + (−2366w2 + 490w + 24626)x2 + (−257958w2 − 686928w

+ 5152928)x+ (1226851w2 − 56922233w+ 176054907).

(11) For K0 defined by ν3 − 109ν − 436, and w3 = 109,

y3 = x4 +
(
1115888872w2 − 4007074778w− 6321528472

)
x2

+
(
−39141169182336w2+ 294349080537984w− 512926132238464

)
x

+ 816342009554519305w2− 9276324622428605048w

+ 25684086855493144296.

(12) For K0 defined by ν3 − ν2 − 42ν − 80, and w3 = 127,

y3 = x4 +
(
−92075757704w2 + 319193013538w+ 721950578888

)
x2

+
(
− 49404281036538240w2 − 182817463505393280w+

2167183294305193600
)
x+ 21690511027003736433025w2−

118803029086722205449800w+ 49134882128483485627800.

(13) For K0 defined by v3 − 61v − 183, we have four curves. The first one is defined over Q.

y3 = x4 − 2 · 3 · 7 · 612 · 1289 x2 + 23 · 37 · 11 · 41 · 53 · 612 x

− 32 · 7 · 112 · 613 · 419 · 4663

y3 = x4 +
(
89264v2 − 547484v− 4059720

)
x2 +

(
− 29558196v2 + 49526073v

+ 772138494
)
x+ 88325678v2 − 16281030326v− 72348132021

(14) For K0 defined by v3 − v2 − 22v − 5, similarly one gets:

y3 = x4 + 2 · 7 · 67 · 179 x2 + 23 · 33 · 5 · 67 · 137 x+ 52 · 7 · 672 · 71 · 89

y3 = x4 +
(
12222v2 − 263088v− 1290744

)
x2 +

(
− 19721880v2 + 232016400v

+ 1277237160
)
x+ 11453819175v2 − 62791404525v− 447679991475 .

Remark 4.1. We observe that for each one of the curves listed above, the corresponding unramified
field K(j1, j2) over K coincides with the Hilbert class field of K, except for the cases h = h∗ = 4 where
K(j1, j2) = K (see [16, Main Theorem 1]).
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A Appendix (by Christelle Vincent)

Let C be a hyperelliptic curve of genus g defined over C, and denote by x : C → P1 a morphism of
degree 2 from C to P1. Then x has 2g + 2 branch points which do not depend on the choice of x.
We fix once and for all an ordering of these branch points, and denote them by P1, P2, . . . , P2g+2.
Furthermore, for simplicity of notation in what follows we will denote

aj = x(Pj). (11)

The significance of these quantities is the following: If x(Pj) 6= ∞ for any j, then a model for C
over C is given by

y2 =

2g+2∏

j=1

(x− aj), (12)

whereas if there is k with x(Pk) = ∞, a model for C over C is given by

y2 =
∏

j 6=k

(x − aj). (13)

Our goal in this Appendix is to show the following Proposition, which generalizes a formula given
by Takase [1, Theorem 1.1]. In the statement we use the notation [al, am, ak, a∞] for the cross-ratio

[al, am, ak, a∞] =
ak − al
ak − am

·
a∞ − am
a∞ − al

. (14)

Proposition A.1. Let C be a hyperelliptic curve defined over C, x : C → P1 be a morphism of degree 2
with branch points P1, . . . , P2g+2, and Ω be a (small) period matrix for J(C), the Jacobian of C. Let
k, l and m be distinct and belong to the set {1, 2, . . . , 2g + 2}, and fix P∞ a distinguished branch point
of x, ∞ 6= k, l,m. Then, for aj = x(Pj) and η an eta-map associated to Ω and the base point P∞ (see
Section A.1 for more on eta-maps) with corresponding U -set Uη, we have

[al, am, ak, a∞] = exp(4πi(ηm − ηl)1(ηk)2)

(
θ[ηUη◦(V ∪{k,l})](Ω)θ[ηUη◦(W∪{k,l})](Ω)

θ[ηUη◦(V ∪{k,m})](Ω)θ[ηUη◦(W∪{k,m})](Ω)

)2

, (15)

where V and W are any sets that give a disjoint decomposition

{1, 2, . . . , 2g + 1, 2g + 2} = V ∪W ∪ {k, l,m,∞}, (16)

with #V = #W = g − 1.

Indeed, in his work Takase gives the formula above, but only for certain choices of period matrix Ω
for the Jacobian of C, which are those given by Mumford [2], using his “traditional” choice of symplectic
basis for the first homology group of the Jacobian. Following this, our earlier article [3, Theorem 4.5]
claimed to give the formula for all period matrices, but there remained a mistake in the sign, which
had not been corrected to account for the general case. The formula we finally give here is valid for
all period matrices, and gives the correct sign. We note that the software available at [4] has been
updated to be correct. We also note that our formula does not assume that a∞ = ∞, which explains
why we compute the cross-ratio [al, am, ak, a∞] rather than the simpler quotient ak−al

ak−am
.

As an immediate Corollary, if we denote by λi for i = 3, 4, . . . , 2g+1 the Rosenhain invariants of C,
by which we mean the constants appearing in a choice of Rosenhain model

C : y2 = x(x − 1)

2g+1∏

i=3

(x− λi) (17)

for the curve C, we obtain the following formula:

Corollary A.2. Let C be a hyperelliptic curve defined over C, and fix a choice of Rosenhain model
for C. Let P∞ denote the point of C that is “at infinity” in the Rosenhain model of C, Ω be a choice
of period matrix for J(C), the Jacobian of C, and η be an eta-map associated to Ω and the base point
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P∞ with corresponding U -set Uη. Then for j ∈ {3, 4, . . . , 2g + 1}, the Rosenhain invariants of C are
given by the expression

λj = exp(4πi(ηj − η2)1(η1)2)

(
θ[ηUη◦(V ∪{1,2})](Ω)θ[ηUη◦(W∪{1,2})](Ω)

θ[ηUη◦(V ∪{1,j})](Ω)θ[ηUη◦(W∪{1,j})](Ω)

)2

, (18)

where V and W are two sets of cardinality g − 1 such that

V ∪W = {3, 4, . . . , 2g + 1} \ {j}, (19)

and the notation ◦ denotes the symmetric difference of two sets: For S, T ⊆ {1, 2, . . . , 2g+2}, we have

S ◦ T = (S ∪ T ) \ (S ∩ T ). (20)
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A.1 Preliminaries

Following the technique used in the body of the paper, we will use Siegel’s Theorem 2.2 applied to a
suitable choice of function φ : C → P1 to obtain our results. To apply Siegel’s Theorem, we first need
a non-special divisor on C:

Lemma A.3. Let C be a hyperelliptic curve defined over C, x : C → P1 be a morphism of degree 2
from C to P1, and P1, . . . P2g+2 be the branch points of x. Let I ⊂ {1, 2, . . . , 2g + 2} be any subset of
cardinality g. Then

D =
∑

i∈I

Pi (21)

is a non-special divisor on C. In other words, any sum of g distinct branch points of x is a non-special
divisor on C.

Proof. We recall that a divisor D is non-special if ℓ(K −D) = 0, where K is a canonical divisor on the
curve C. By Riemann-Roch we have that

ℓ(D)− ℓ(K −D) = deg(D)− g + 1, (22)

and here deg(D) = g, so to show that ℓ(K −D) = 0 it suffices to show that ℓ(D) = 1.
Let D be as in the statement of the Lemma, and let P∞ be a branch point of x that does not belong

to the support of D. For i ∈ I, the function

xi(P ) =
x(P )− x(Pi)

x(P )− x(P∞)
(23)

has a double zero at Pi and a double pole at P∞. As a result, the divisor D is equivalent to the divisor

2gP∞ −D, (24)

and the linear space associated to the divisor D is isomorphic to the linear space associated to the
divisor 2gP∞ −D. In particular, their dimensions are the same. Therefore we may show that

ℓ(2gP∞ −D) = 1 (25)

to prove our claim.

13



Now the linear space associated to the divisor 2gP∞ − D is the space of functions with a pole of
order at most 2g at P∞ and zeroes at each of the g points that belong to the support of D. We can
give a model

s2 = f(t) (26)

for our curve C, where f is a polynomial of degree 2g + 1 with zeroes at x(Pj), Pj a branch point of
x, Pj 6= P∞. Then the function field of C is generated over C by s and t. Furthermore, we have that

div(s) =
∑

Pj 6=P∞

Pj − (2g + 1)P∞ (27)

and t has a double pole at P∞ and no other poles. From this it follows that the space of functions with
a pole of order at most 2g at P∞ and no other poles is the space of polynomials in t of degree at most
g. If we require further that this function vanishes at the g points in the support of D, we obtain a
space of dimension 1, which completes the proof.

Secondly, to connect our result to the established literature on hyperelliptic curves, we will need an
eta-map associated to a period matrix Ω and a base point P∞. We refer the interested reader to either
Poor’s work [5] or our earlier work [3] for more details on these maps, and present here only the barest
of facts necessary to keep this Appendix readable. Let P∞ be an arbitrary but fixed branched point of
the degree 2 morphism x : C → P1 fixed above, and recall that we have labeled the branch points of x
to be P1, P2, . . . , P2g+2 (one of these is of course also labeled P∞). As in the body of the paper, fix α
an Abel-Jacobi map for C with base point P∞. Then for j ∈ {1, 2, . . . , 2g + 2}, we write

ηj = P̃j ∈

{
0,

1

2

}2g

(28)

where ·̃ is the map given in equation (6), and as in the body of the paper we denote the composition
of the three maps by the last. (The fact that the coordinates of ηj for each j are half-integers follows
from the fact that Pj −P∞ is two-torsion in J(C), see [2, Corollary 2.11].) Furthermore, for any subset
S ⊆ {1, 2, . . . , 2g + 2}, we write

ηS =
∑

j∈S

ηj . (29)

Note that we use the same convention as in the body of the paper regarding summation. It then follows
that

ηS = D̃S , (30)

for
DS =

∑

j∈S

Pj . (31)

We note that the dependence of the eta-map on the period matrix Ω happens explicitly via the map ·.
Under these assumptions, there exists a subset Uη ⊆ {1, 2, . . . , 2g + 2} such that

ηUη
≡ ∆̃ (mod Z2g) (32)

where ∆ is the Riemann constant associated to the choice of Abel-Jacobi map α that we made. We
note that in fact there are several such sets; it is customary to choose one of even cardinality, and we
have adopted in earlier work the convention that Uη should also contain ∞. This determines the set Uη

uniquely. We call this set a U -set corresponding to η. Finally, one can show that if S is the complement
of T inside of {1, 2, . . . , 2g + 2}, then

ηS = ηT . (33)

A.2 Proof of the formula

With this notation and preliminaries in place, we may begin the proof. We begin with an auxiliary
result:
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Lemma A.4. Let Pj and P∞ be two distinct branch points of the morphism x, α be an Abel-Jacobi

map with base point P∞, and γ be a path from P∞ to Pj such that if P̃j = ηj (where the map ·̃ is as in
equation (6)), then ∫

γ

ω = Ω(ηj)1 + (ηj)2. (34)

In this case there exists a second path γ̃ from P∞ to Pj such that

∫

γ

ω +

∫

γ̃

ω = 0 in Cg. (35)

Proof. We have that P̃j = ηj ∈ {0, 12}
2g (see equation (28) and the discussion surrounding it for this

fact). From this it follows that if LΩ = ΩZ2g + Z2g is the lattice attached to the period matrix Ω, we
have that ∫

γ

ω ∈
1

2
LΩ, (36)

or

2

∫

γ

ω ∈ LΩ. (37)

As a consequence,
∫
γ
ω and −

∫
γ
ω differ by an element of LΩ, and since every LΩ-translate of

∫
γ
ω is∫

γ̃
ω for some other path γ̃ from P∞ to Pj , it follows that there is γ̃ from P∞ to Pj such that

−

∫

γ

ω =

∫

γ̃

ω. (38)

We can now give the crucial part of the proof:

Lemma A.5. Let C be a hyperelliptic curve defined over C, x : C → P1 be a morphism of degree 2
with branch points P1, . . . , P2g+2, and Ω be a period matrix for J(C), the Jacobian of C. Let k, l and
m be distinct and belong to the set {1, 2, . . . , 2g+2}, and fix P∞ a distinguished branch point of x, with
∞ 6= k, l,m. Then, for aj = x(Pj), and η an eta-map associated to Ω and to the base point P∞ with
corresponding U -set Uη, we have

[al, am, ak, a∞] = ǫ(k, l,m)

(
θ[ηSl◦Uη

](Ω)θ[ηTm◦Uη
](Ω)

θ[ηSm◦Uη
](Ω)θ[ηTl◦Uη

](Ω)

)2

, (39)

where
ǫ(k, l,m) = exp(4πi(ηm − ηl)1(ηk)2), (40)

and for j = l,m, we have
Tj = V ∪ {j}, (41)

and
Sj = Tj ∪ {k} = V ∪ {j, k}, (42)

where V is any set of cardinality g − 1 such that V ⊂ {1, 2, . . . , 2g + 2}, k, l,m,∞ 6∈ V .

Proof. To begin, fix ∞ ∈ {1, 2, . . . , 2g + 2}, ∞ 6= k, l,m, and let

xk(P ) : C → P1 (43)

be given by

xk(P ) =
x(P ) − x(Pk)

x(P )− x(P∞)
. (44)

Then the cross-ratio we seek is given by

[al, am, ak, a∞] =
xk(Pl)

xk(Pm)
. (45)
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Next we fix a subset V ⊂ {1, 2, . . . , 2g + 2} of cardinality g − 1 such that k, l,m,∞ 6∈ V . (Note that
this is possible since 2g − 2 ≥ g − 1 for g ≥ 1.) Then the quantity which interests us is given by

[al, am, ak, a∞] =
xk(Pl)

∏
i∈V xk(Pi)

xk(Pm)
∏

i∈V xk(Pi)
. (46)

In addition, for j = l,m, the divisor

Dj = Pj +
∑

i∈V

Pi (47)

is a sum of g distinct branch points of x, and therefore an effective non-special divisor by Lemma A.3.
Using the notation of Siegel’s Theorem 2.2, we have

[al, am, ak, a∞] =
xk(Dl)

xk(Dm)
, (48)

and now wish to apply Corollary 2.3 to compute the quantities xk(Dl) and xk(Dm). To do so, we note
that

div(xk) = 2Pk − 2P∞ (49)

and that the supports of the divisors Dl and Dm avoid the support of div(xk). As in the previous
section, we denote by ∆ the Riemann constant for the Abel-Jacobi map α of C with base point P∞. In
the application of Siegel’s Theorem, we will choose the paths from P∞ to P∞ to be the trivial paths.
As in Lemma A.4, we fix a path γ from Pk to P∞ such that

∫

γ

ω = P̃k = Ω(ηk)1 + (ηk)2, (50)

and denote by γ̃ the path from Pk to P∞ such that
∫

γ

ω +

∫

γ̃

ω = 0. (51)

We have then that ∫

γ̃

ω = −P̃k. (52)

Then if we apply Corollary 2.3 to xk(Dl) and xk(Dm), we obtain

[al, am, ak, a∞] =
xk(Dl)

xk(Dm)
(53)

=

(
E′ θ[P̃l +

∑
i∈V P̃i − P̃k − ∆̃](Ω)θ[P̃l +

∑
i∈V P̃i + P̃k − ∆̃](Ω)

θ[P̃l +
∑

i∈V P̃i − ∆̃](Ω)2

)
(54)

÷

(
E′ θ[P̃m +

∑
i∈V P̃i − P̃k − ∆̃](Ω)θ[P̃m +

∑
i∈V P̃i + P̃k − ∆̃](Ω)

θ[P̃m +
∑

i∈V P̃i − ∆̃](Ω)2

)
.

Let now
Tj = V ∪ {j}, (55)

for j = l,m, and replace the notation P̃i with the notation ηi, using our convention for sums:

[al, am, ak, a∞] =

(
θ[ηTl

− ηk − ∆̃](Ω)θ[ηTl
+ ηk − ∆̃](Ω)

θ[ηTl
− ∆̃](Ω)2

)
(56)

÷

(
θ[ηTm

− ηk − ∆̃](Ω)θ[ηTm
+ ηk − ∆̃](Ω)

θ[ηTm
− ∆̃](Ω)2

)

=

(
θ[ηTl

+ ηk − ∆̃− 2ηk](Ω)θ[ηTl
+ ηk − ∆̃](Ω)

θ[ηTl
− ∆̃](Ω)2

)
(57)

÷

(
θ[ηTm

+ ηk − ∆̃− 2ηk](Ω)θ[ηTm
+ ηk − ∆̃](Ω)

θ[ηTm
− ∆̃](Ω)2

)
.
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To make our expressions shorter, we write

Sj = Tj ∪ {k} = V ∪ {j, k} (58)

for j = l,m, so that we have
ηTj

+ ηk = ηSj
, (59)

since k 6∈ Tj . Continuing our computation we have

[al, am, ak, a∞] =

(
θ[ηSl

− ∆̃− 2ηk](Ω)θ[ηSl
− ∆̃](Ω)

θ[ηTl
− ∆̃](Ω)2

)
÷

(
θ[ηSm

− ∆̃− 2ηk](Ω)θ[ηSm
− ∆̃](Ω)

θ[ηTm
− ∆̃](Ω)2

)
.

(60)

We now notice that for j = l,m, the characteristics

ηSj
− ∆̃− 2ηk and ηSj

− ∆̃ (61)

differ by an integer vector, namely −2ηk. Therefore we may apply the quasi-periodicity property of
the Riemann theta constant with characteristic given in equation (5) to obtain

θ[ηSj
− ∆̃− 2ηk](Ω) = exp(4πi(∆̃− ηSj

)1(ηk)2)θ[ηSj
− ∆̃](Ω). (62)

Therefore we have

[al, am, ak, a∞] =

(
exp(4πi(∆̃− ηSl

)1(ηk)2)θ[ηSl
− ∆̃](Ω)2

θ[ηTl
− ∆̃](Ω)2

)
(63)

÷

(
exp(4πi(∆̃− ηSm

)1(ηk)2)θ[ηSm
− ∆̃](Ω)2

θ[ηTm
− ∆̃](Ω)2

)

=
exp(4πi(∆̃− ηSl

)1(ηk)2)

exp(4πi(∆̃− ηSm
)1(ηk)2)

(
θ[ηSl

− ∆̃](Ω)θ[ηTm
− ∆̃](Ω)

θ[ηSm
− ∆̃](Ω)θ[ηTl

− ∆̃](Ω)

)2

.

We can simplify the sign:

exp(4πi(∆̃− ηSl
)1(ηk)2)

exp(4πi(∆̃− ηSm
)1(ηk)2)

= exp(4πi(ηSm
− ηSl

)1(ηk)2) (64)

= exp(4πi(ηm − ηl)1(ηk)2).

We now handle the quantity ∆̃. First, we note that since ∆̃ is a vector with half-integer entries,
∆̃ and −∆̃ differ by a vector with integer entries. Furthermore, as noted in equation (32), ηUη

and ∆̃

differ by a vector with integer entries. Therefore −∆̃ and ηUη
differ by a vector with integer entries,

say n:
− ∆̃ = ηUη

+ n. (65)

Recalling our notation for the symmetric difference of two sets given in equation (20), we have that

ηSj
− ∆̃ = ηSj

+ ηUη
+ n = ηSj◦Uη

+ 2ηSj∩Uη
+ n, (66)

and
ηTj

− ∆̃ = ηTj
+ ηUη

+ n = ηTj◦Uη
+ 2ηTj∩Uη

+ n, (67)

for j = l,m.
Carrying on with our computation we therefore have

[al, am, ak, a∞] = exp(4πi(ηm − ηl)1(ηk)2)

(
θ[ηSl◦Uη

+ 2ηSl∩Uη
+ n](Ω)θ[ηTm◦Uη

+ 2ηTm∩Uη
+ n](Ω)

θ[ηSm◦Uη
+ 2ηSm∩Uη

+ n](Ω)θ[ηTl◦Uη
+ 2ηTl∩Uη

+ n](Ω)

)2

.

(68)
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Lastly, we apply the quasi-periodicity property of the Riemann theta constant with characteristic
once more to remove the integer vectors appearing in each characteristic. This time around, we note
that since all of characteristics appearing above are half-integers, the sign exp(2πix1m2) from the
transformation formula will be ±1. Since all of the theta constants are now squared in the formula,
the signs vanish and we finally obtain:

[al, am, ak, a∞] = exp(4πi(ηm − ηl)1(ηk)2)

(
θ[ηSl◦Uη

](Ω)θ[ηTm◦Uη
](Ω)

θ[ηSm◦Uη
](Ω)θ[ηTl◦Uη

](Ω)

)2

. (69)

This completes the proof

To finish the proof of Proposition A.1, it remains now only to rewrite it so that the characteristics
agree with Takase’s and to verify that the signs agree. Indeed, the cross-ratio we compute here in this
article agrees with the quotient computed by Takase, since in his article, Takase assumes that a∞ = ∞.
In that case, we have that

[al, am, ak, a∞] =
ak − al
ak − am

. (70)

We therefore turn our attention to the characteristics: Following Takase’s notation, let W be the
complement of V ∪ {k, l,m,∞} in {1, 2, . . . , 2g + 2}. Then from the definitions it follows that

Sj = V ∪ {k, j}, (71)

for j = l,m. We also have that Tl ∪ {∞} is the complement of W ∪ {k,m} in {1, 2, . . . , 2g + 2}, and
Tm ∪ {∞} is the complement of W ∪ {k, l}. As a result,

((Tm ∪ {∞}) ◦ Uη)
c = Uη ◦ (W ∪ {k, l}), (72)

and
((Tl ∪ {∞}) ◦ Uη)

c = Uη ◦ (W ∪ {k,m}). (73)

Now by definition, we have that
η∞ = 0, (74)

since P∞ is chosen to be the base point of the Abel-Jacobi map, so the divisor P∞ − P∞ maps to the
identity in J(C). Therefore we have

η(Tj∪{∞})◦Uη
= ηTj◦Uη

, (75)

for j = l,m, since the difference between the two sides of the equality is η∞ which is zero. By equation
(33), we have that

η(Tl∪{∞})◦Uη
= ηUη◦(W∪{k,m}) (76)

and
η(Tm∪{∞})◦Uη

= ηUη◦(W∪{k,l}). (77)

Putting all of this together, we obtain

[al, am, ak, a∞] = exp(4πi(ηm − ηl)1(ηk)2)

(
θ[ηUη◦(V ∪{k,l})](Ω)θ[ηUη◦(W∪{k,l})](Ω)

θ[ηUη◦(V ∪{k,m})](Ω)θ[ηUη◦(W∪{k,m})](Ω)

)2

. (78)

To verify that the signs agree, we note that before simplifying his expression, Takase has the sign
written as

(−1)4(ηk)1(ηl+ηm)2 = exp(4πi(ηk)1(ηl + ηm)2). (79)

We first begin by noting that the sign that we obtain is equal to

exp(4πi(ηm − ηl)1(ηk)2) = exp(4πi(ηl + ηm)1(ηk)2) (80)

(here we have replaced the difference of ηm and ηl with its sum), since both ηl and ηm have half-integer
entries; the sign of the expression depends only on the number of half-integer (as opposed to integer)
coordinates, not on their sign or size. Define

e2(ξ, ζ) = exp(4πi(ξ1ζ2 − ξ2ζ1)), (81)
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then we have

exp(4πi(ηl + ηm)1(ηk)2) exp(4πi(ηk)1(ηl + ηm)2) (82)

= exp(4πi(ηl + ηm)1(ηk)2) exp(−4πi(ηk)1(ηl + ηm)2)

= e2(ηl + ηm, ηk)

= e2(ηl, ηk)e2(ηm, ηk).

Now it is a property of the eta-maps that e2(ηi, ηj) = −1 whenever i 6= j (see [5, Lemma 1.4.13] or [3,
Proposition 3.5]), so the expression is 1. This shows that the two signs (Takase’s and ours) are always
the same. This completes the proof of Proposition A.1.

We now end with the proof of Corollary A.2:

Proof of Corollary A.2. To obtain the values λi, we post-compose the degree 2 morphism x : C → P1

with a linear fractional transformation of P1 sending x(P1) to 0, x(P2) to 1 and x(P2g+2) to ∞. This
new map is again a degree 2 morphism C → P1, and so the result of Proposition A.1 applies. In
addition, we use that for this particular map, if λj = x(Pj), then we have

λj =
0− λj

0− 1
= [λj , 1, 0,∞] =

x(P1)− x(Pj)

x(P1)− x(P2)
. (83)

Therefore we fix k = 1, l = 2 and m = j to obtain

λj = exp(4πi(ηj − η2)1(η1)2)

(
θ[ηUη◦(V ∪{1,2})](Ω)θ[ηUη◦(W∪{1,2})](Ω)

θ[ηUη◦(V ∪{1,j})](Ω)θ[ηUη◦(W∪{1,j})](Ω)

)2

. (84)
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