Improving Situational Awareness of Flash Flooding in a Small Urban Catchment by Integrating Meteorological Analysis into a Geospatial Framework

John M. Goff1, Lesley-Ann Dupigny-Giroux2, John Kilbride2, Sarah Leidinger2, Phoebe Fooks2, Jeffrey D. Marshall3, Megan Moir4

1NOAA/National Weather Service, Burlington, VT
2University of Vermont, Dept. of Geography
3University of Vermont, Bailey/Howe Library Special Collections
4City of Burlington, VT, Dept. of Public Works
Susceptibility of Flooding Within Urban Environments

• A long known phenomenon
• Urban risk often > rural risk
• Compounding factors of:
 – impervious surfaces
 – channeled flow via stormwater/drainage systems
 – enhanced runoff
Burlington, VT not a Stranger to Flooding

• Six discrete events since 2012, most notably:
 – July 4, 2012
 – May 22, 2013
 – June 29, 2013

• Resulting from intense convective rainfall bursts

Main St. at South Winooski Ave., 7/4/2012
Why Here?

- Burlington, VT watershed as defined by NWS Flash Flood Monitoring and Prediction (FFMP) software
- Most reports occur along a subtle, largely buried natural drainage

- July 4, 2012
- May 22, 2013
Methodology

- GIS mapping
- Historical Content Analysis
- Radar and Hydrometeorology
- Human contributions
GIS Analysis

- Hillshade layer derived from 3.2m DEM reveals enhanced detail along the drainage (black outline)
- Notice the several small depressions (arrowed)
- Some of these areas served as foci for areas of flooding during the 2012 & 2013 events
GIS Analysis

- 2 foot contours reveal greater detail
- Overlay of the 4 July, 2012 and 22 May, 2013 flooding locations highlights the importance of the drainage and natural depressions
The Story of Burlington’s Lost Ravine

• A natural northeast -> southwest oriented drainage clearly evident on early maps from the 1800s.
• Was an early impediment to eastward development of the city.
• Served as a conduit for the Vermont Central Railroad (m. 1800s), and the city’s primary sewerage conduit by the late 1800s into the 20th century before modernization.
• Largely filled/buried by the 20th century, though evidence remains.
The King Street Dip
Flood Frequency Analysis

• Warm season heavy rainfall events (Apr. – Sep.) tallied from the early 20th century through Sep. 2013
 – Burlington Free Press archives
 – NWS Storm Data
 – Search technique → examine all 25.4mm (1.0”)+ rainfall days (@ KBTV)
 – Additional criteria to search days where hourly rates > 25.4mm (1.0”)

• 67 heavy rainfall days identified

• Hourly constraints limited search to 1948 onward

• Flooding was reported on 28 of the 67 days (42%).

• Flooding reports were not completely coincident with hourly rates > 25.4mm (1.0”) → (cross-hour totals)
Meteorological Analysis – Hourly Rates

• Of the 67 heavy rainfall events, rates mainly ranged from 0.15 to 0.35 mm, or 0.75 to 1.5 inches per hour.

• Right hand tail – more extreme events.
Sub-hourly precipitation data available from 1971 onward, limiting cases to 44.

- Only slightly greater totals noted between flood and null events.

- F-test data showed near equal variances of short term precipitation rate between flood and null events.
Precipitation Intensity Frequency Duration Plots for Burlington

- 2 and 5 year return period data show sub-hourly rates in excess of 1 inch, matching the box and whisker plots.
- These intense sub-hourly rates likely play a large role in the city’s flood episodes.
Antecedent Precipitation

- Slightly higher for flood vs. null events
- Greater differences at 1 week time frame
- Results inconclusive though antecedent precipitation likely plays a role in some events (August 1955)
Radar Case Studies

- 4 July, 2012 → No dual-polarization data
- 22 May, 2013 → Dual-polarization data available
- All data from KCXX WSR-88D in Colchester, VT
22 May, 2013 Dual Polarization Data

• Short term intense convective rainfall burst 2130-2215 UTC.

• An impressive 0.96 inches observed in 14 min. at KBTV

• DP instantaneous rates up to 6 inches per hour and short term estimates of 1-2 inches in 30 min.

• DP data performed better than legacy WSR-88D precipitation estimates.
Human Contributions to Flooding

- Clogged drains/catchment basins
- Modern sewer lines intersecting with ravine sewer → more crisscrossing lessens slope of water drainage and slows flow
- Feedback via Burlington Public Works Stormwater staff
Summary

- Burlington remains prone to urban flood events.
- High intensity, short duration convective rainfall bursts > 1 inch in < 1 hour most problematic.
- Variability in convective rainfall rates over short distances likely responsible for some of the data disparities.
- WSR-88D dual-polarization precipitation estimates and instantaneous precipitation rates more valuable than legacy radar estimates.
- Higher density rain gauge network would add considerable value and enhance S/A for potential and early detection of flood events.
- Human contributions to the urban flood phenomenon is an important consideration.
Thank You