A Statistical Model for Climate Downscaling with Uncertainty Quantification for Engineering Infrastructure Design and Adaptation

Ernst Linder (UNH) elinder@unh.edu
Collaborators:
UNH: Meng Zhao, Yiming Liu, Jennifer Jacobs,
Texas Tech: Anne Stoner
Climate Change and Infrastructure Design

Climate Model Output

Local Weather Series (blue)
(current observed, future projected)

Downscaling

Coupling of Climate Model with Impact Process Model

Freeze and Thaw Series determines
WWP Dates (Winter Weight Premium)
SLR Dates (Spring Load Restriction)
Downscaling (ESD) from Climate Model Output to a Weather Scenario

- Consider only one climate variable (not a weather generator)
- Assume temporal pattern trend, seasonal (annual) cycles, short term dependence
- Method based on quantile-(quantile) matching (or pattern matching, or distribution translation)
- Known as Probabilistic Downscaling or Empirical Statistical Downscaling (ESD):
 The probability distribution (CDF) of climate is shifted/translated to that of local weather
 But: No attempt at trying to match actual weather: Asynchronicity
 (See Benestad et al. 2013)
- Develop method for Uncertainty Quantification:
 Confidence Intervals for Infrastructure “Endpoint”
- Uncertainty due to Downscaling only. Assume all climate model information as given.
ESD of a Temporally Patterned Climate Variable

\[X_C \] current \textbf{model} output time series (or historic / baseline)
\[Y_C \] current \textbf{weather} time series

\[X_P \] projected (future) \textbf{model} output
\[Y_P \] projected \textbf{weather} scenario; \textit{unknown}

- Assume temporal pattern (eg daily temperature)
 has \textit{trend, seasonal (annual) cycles, short term dependence}
ESD: Marginal Distribution Translation via q-q matching

• **Matching Quantiles:**

\[
x^* \sim F_X(x) \quad \text{and} \quad y^* \sim F_Y(y) \quad \text{if} \quad F_Y(y^*) = F_X(x^*) \quad F(\cdot) \; \text{cdf}
\]

then:

\[
y^* = T(x^*) = F_Y^{-1}(F_X(x^*))
\]

(Panovsky and Brier, 1958)

• **Downscaling:**

1. Match empirical quantiles of \(X_C\) and \(Y_C\)
2. Fit a curve or interpolate plus interpolation(*)

Note: - *this permutes the series:* asynchronicity
- corrupts temporal dependence

(2) Then use values of \(X_P\) to predict \(y_P = T(x_P)\)

• **Corruption of temporal structure more serious** than suboptimal choice of interpolation

Empirical quantiles of the marginal distribution are not representative of the \(F(\cdot)\) for a structured time series

(*) Variations: linear regression, piecewise linear, spline regression, kernel convolution, analog method...

(*) Delta method is a special case
• Empirical quantiles of the marginal distribution are not representative of the F() for a structured time series

Two Series: Same (marginal) mean and standard deviation (left: random, right: AR(2)
Detour: Two possible ways to predict future scenario

1 **Model to Station Translation (MST):** (this one is used more often)
Match quantiles of \(X_c \) and \(Y_c \), then apply the translation to future \(X_p \).
So-called “stationarity” assumption: Translation remains valid when going from present to future.

2 **Current to Future Translation (CFT):** Match the quantiles of \(X_c \) and \(X_p \) (clim. model output) then apply the translation to \(Y_c \) (station weather).
Here “stationarity”; translation (from current to future) is valid when going from model output to station data. Better term would be: “(model-to-station) consistency”

Note: - CDFt (Michelangeli et al., 2009) and xCDFt (Kallache et al. 2011) is based on CFT
- only very specialized situations give same result for MST and CFT

We will only discuss MST

\[(X_C, Y_C) \text{ current (or historic / baseline)} (model output, weather)\]
\[X_p \text{ projected (future) model output}\]
\[Y_p \text{ projected weather; (unknown)}\]
Multivariate (MV) Distribution for Structured Time Series

- q-q matching DS for **scale-location marginal distribution** (eg normal, t, Gumbel):
 \[y^* = T(x^*) = \mu_Y + \sigma_Y \Phi_Y^{-1}\left(\Phi_X\left(\frac{x^* - \mu_X}{\sigma_X} \right) \right) = \mu_Y + \sigma_Y \left(\frac{x^* - \mu_X}{\sigma_X} \right); \]
 \(\Phi \) is stand. cdf

- MV cdf distr. of time series: \(x_C = (x_{C,1}, x_{C,2}, \ldots, x_{C,T}) \): \(F_{x_C}(x_C) \) etc.

- Correct downscaling:
 \[y_p = \mu_{Y_C} + \Sigma_{Y_C}^{1/2} \Phi_{Y_C}^{-1}\left(\Phi_{X_C}\left(\Sigma_{X_C}^{-1/2}(x_p - \mu_{X_C}) \right) \right), \quad (2) \]

 where \(\mu \) is the fitted mean (series), and \(\Sigma \) is the variance covariance matrix
Downscaling (ESD) and Time Series Modeling

- TS model fitting:
 - Trend: cubic spline with 3 knots (defines mean)
 - Seasonal cycles: cubic spline with 8 knots (defines mean)
 - Time dependence: ARMA Model autoreg. order $p=3$ (AR(3)) (def cov)
 - Noise (error) distribution: Not specified for DS

- Noise variable: independent realizations: DS via QQ matching possible

- Equation again:

$$y_p = \mu_{Y_C} + \Sigma_{Y_C}^{1/2} \Phi_{Y_C}^{-1} \left(\Phi_{X_C} \left(\Sigma_{X_C}^{-1/2} (x_p - \mu_{X_C}) \right) \right)$$

1: Standardized residual operation: mean subtraction and “whitening’; Model for X_C
 applied to x_p

2: Downscale standardized residuals using empirical q-q matching of e_{-X_C} and e_{-Y_C}

3: “Coloring” and mean structure adding; Model of Y_C
Whitening and Coloring

- AR and ARMA time series: Whitening (removing the dependence structure) requires filtering (i.e. a sequential calculation)
- Coloring (adding dependence structure) requires inverse filtering (TS simulation)
- Noise variable: independent realizations: **DS via QQ matching possible**

- Available in software (e.g. R)
- Steps:
 a) Whitening with model for X_C;
 1. Subtract the mean structure μ_{X_C} of X_C (lin. Regression residuals)
 2. Whiten the ARMA model for the regression residuals of 1.
 b) Coloring a standardized residual with model for Y_C
 1. Simulate the ARMA model using the given residuals as noise (innovation)
 2. Add the mean structure μ_{Y_C} to the result of 1.
Uncertainty Quantification via Bootstrapping

• Linear Standard Error approximations not feasible
• Use Bootstrap (resampling/simulation) based calculations for standard error and confidence intervals.
• Bootstrapping time series: nonparametrically using block resampling (difficult to implement with annual cycles)
• For simple AR models (no trend, cycles): Can resample residuals (Efron, Politis et al ..)
• Best for us: Parametrically sample from limiting normal distribution (*) of fitted parameters, then simulate series with randomly permuted residuals. (A hybrid parametric/nonparametric bootstrap)

(*)Limiting normal distributions are correct for the long daily series of 30 – 50 yrs
Freeze-Thaw Cycle: Winter Weight Premium - Spring Load Restriction (see Jacobs et al.)

A Prototype Freeze-Thaw Model that only depends on daily temperature

\[
FI_i = T_{\text{ref}} - T_{\text{avg},i}
\]

\[
CFI_n = \sum_{i=1}^{n} FI_i
\]

\[
TI_i = T_{\text{avg},i} - T_{\text{ref}}
\]

\[
CTI_n = \sum_{i=1}^{n} \left(\text{Daily Thawing Index} - 0.5 \times \text{Daily Freezing Index} \right)
\]

FI, CFI = daily & cumulative freezing index

TI, CTI = daily & cumulative thawing index

T_{\text{avg},i} = average air temperature

T_{\text{ref}} = reference temperature

(often taken as 32 °F, but may vary)

MnDOT (2009):

- Apply **WWP** When CFI > 280°F days
- Apply **SLR** When CTI > 25°F days

Simplified Freeze-Thaw Model that only depends on average daily temperature
Some Results (using CCSM4)

Using simple q-q matching method
Summary

- We have applied **time series modeling** and analysis to empirical statistical downscaling (ESD) for studies where **temporal** (short term) **structure** is important and needs to be translated correctly from climate model to local weather scenarios.

- This enables the **coupling** of process **models** for infrastructure design (eg bridges, pavements, road maintenance, etc.) with climate model outputs.

- Either GCM’s (global climate models) or RCM’s can be used in this framework.

- We applied a hybrid **Bootstrap** for standard error and **confidence interval** calculations. It allows to correctly **propagate statistical uncertainty** measures through the downscaling calculations and additional process model steps.

- The bootstrapping limits the use of very computationally intensive coupled process models somewhat.
Next steps

- Multiple climate model outputs: Downscale first, then combine estimates.
- Could the framework be extended to multiple climate variables - combine a weather generator model with this ESD model, which then can be coupled to infrastructure design (or impact) models.

Ernst Linder
Dept. of Math. & Statistics
U. of New Hampshire
elinder@unh.edu

Thanks!