Chem 286: NMR methodology course syllabus

instructor: Monika Ivancic

Lab component

January 18 course overview; lab structure & schedule labs
NMR spectrometer: magnet, console, computer, probe

Jan 23 & 25 NMR active nuclei, principles behind NMR (how and why it works)
Principles behind NMR: E-levels, Boltzmann distribution

lab 1: 1H 1D on Bruker & using MNova

Jan 30 & Feb 1 The vector model of NMR: rotating frame, the pulse & QPD

February 6 & 8 The vector model (cont’d): phase cycling, Nyquist & sampling the FID
Recording the spectrum: time and frequency domains

Feb 13 & 15 Practical aspects of 13C NMR
NOE enhancement vs. Polarization Transfer (DEPT, INEPT)

lab 2: 13C 1D & DEPT on Bruker

February 22 Chemical shifts and coupling
Electron shielding; origin of spin-spin coupling

Feb 27 & Mar 1 X-nuclei NMR and kinetics by NMR

lab 3: 19F & 31P 1D on Bruker

March 6 & 8 Midterm exam
T1 & T2 relaxation; Mechanisms of relaxation

March 20 & 22 Review of calibrating the 90° pulse
Intro to 2D NMR; Homo vs. heteronuclear experiments

lab 4: quantitative 1H 1D on Varian

March 27 & 29 COSY vs. TOCSY spectroscopy
1H-1H thru bond experiments

April 3 & 5 1H-1H thru space experiments
2D NOESY vs. ROESY theory and practice

lab 5: COSY/TOCSY on Varian

April 10 & 12 special topics ideas: RDCs, protein NMR, large molecule NMR, DOSY
Prep for end-of-semester student presentations

April 17 & 19 1H-13C HSQC (1-bond) and HMBC (2,3-bond) spectroscopy
Experiment setup; data interpretation

lab 6: HSQC/HMBC on Varian

April 24 & 26 Dynamic NMR: lineshape analysis vs. Coalescence T; rate constants k_c
Intermolecular exchange processes

May 1 & 3 Final: student presentations on special NMR topics