Instructor: Matthias Brewer 6-1042 Discovery Hall 107 Matthias.Brewer@uvm.edu

Lecture: 10:50am – 11:40am MWF, Kalkin Building, Rm 001

Laboratory: Monday 5:05 – 7:15 PM; Tuesday 1:15 – 4:00 PM; Tuesday 6:00 – 8:45 PM

Discovery Building, Room 409

Laboratory Check-in / ChemDraw Tutorial – September 4 and 5

Required Course Materials:

(These three items are available as a package from the UVM bookstore.)

Sapling Learning account: account can be purchased as part of book order, or separately

Purchase or Rent from: University Science Books: http://www.uscibooks.com/

Recommended Course Materials:

Molecular Structure Models (e.g.: ISBN: 0471-362719)

Books on reserve in library that may be useful:

Writing Reaction Mechanisms in Organic Chemistry A. Miller ISBN: 0-12-496711-6

Course Prerequisite: Two years of high school chemistry (AP or Honors).

Office hours:

Monday, Wednesday, Thursday: 1:30 – 2:30

or by appointment
This course will address learning goals 1, 2, 3, and 5 below for chemistry majors:

1. Students will demonstrate general knowledge in chemistry and will be able to apply chemical and physical principles in the solution of qualitative and quantitative chemical problems.
2. Students will understand the interplay of observational data, hypotheses, and hypothesis-driven experimentation through application of the scientific method.
3. Students will become proficient in chemical laboratory techniques and be able to apply these to practical and current problems in research.
4. Students will be able to read and critically evaluate the chemical and scientific literature.
5. The students will learn to present scientific data clearly and effectively through both written and verbal communication.

General Comments

In Chemistry 143 we begin an exploration of the basic principles of Organic Chemistry. You will find that Organic Chemistry involves many new concepts, a large number of rules and (by the end of the second semester) a large number of reaction mechanisms. However, as the course progresses and your knowledge grows, you will find that a relatively small subset of concepts tie together the vast amount of information contained in the text. Learning these underlying principles, and knowing when and how to apply them to solve problems, is the key to success. You have seen many of these concepts in General Chemistry, but here they will be considered from a different point of view. For example, knowing the relative electronegativity of atoms is essential to understanding why molecules react the way they do; the concept of electronegativity allows you to rationalize why some atoms are good leaving groups and others are not. A special effort made at the beginning of the course to master the writing of proper Lewis structures with the correct number of bonds, formal charges, and unshared pairs of electrons will pay off as the course progresses. Also, an early and thorough understanding of the relative electronegativity of atoms, Lewis acid-base theory, Bronstead-Lowry acid-base theory, and the rules for writing proper contributing “structures” to resonance hybrids will make the understanding of reaction mechanisms considerably easier.

For each chapter you should work as many of the suggested problems as possible and I strongly urge you to keep up with your reading and problem solving. Organic Chemistry is not inherently difficult, but it is different than any chemistry you have seen thus far. You will need to understand new concepts and then apply those concepts in new situations, which will take a slow and steady approach…cramming does not work well in this subject!

Academic Conduct:

Cheating will be considered grounds for failing the course. All graded assignments must be your own work. This includes on-line homework assignments which are independent exercises, not group exercises. Cases of cheating or plagiarism will lead to further disciplinary action which may include dismissal from the University.
according to the rules set forth in The University of Vermont’s *Code of Academic Integrity*.

Grading:
Your course grade will be based on ten on-line homework assignments, three examinations, a cumulative final examination, and your laboratory grade. *(Note: You must earn a passing grade in the laboratory to receive a passing grade for the course. More than two laboratories missed for any reason will result in a failing grade for the course unless you are granted an incomplete by your Dean).*

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab</td>
<td>20%</td>
</tr>
<tr>
<td>In-class Quizzes</td>
<td>10%</td>
</tr>
<tr>
<td>Online Homework</td>
<td>5%</td>
</tr>
<tr>
<td>3 Midterm Exams</td>
<td>45%</td>
</tr>
<tr>
<td>Cumulative Final</td>
<td>20%</td>
</tr>
</tbody>
</table>

Midterm Dates:
- Wednesday, September 20
 - 6:00 P.M.-8:00 P.M.
 - Kalkin 002
- Wednesday, October 18
 - 6:00 P.M.-8:00 P.M.
 - Kalkin 002
- Wednesday, November 15
 - 6:00 P.M.-8:00 P.M.
 - Kalkin 002

Final Exam Date:
- Friday, December 15
 - 10:30 A.M.-1:15 P.M.
 - Kalkin 001

On-line homework: Due each week by Thursday at 11:55 PM. No homework will be assigned the week after an exam. No homework grades will be dropped.

Extra Credit: *BACON: Biology and Chemistry Online Notes and Tutorials*

‘BACON’ tutorials are a handy resource created by students and faculty at UCLA that are designed to help connect the wonders of organic chemistry to medicine, other aspects of real life, and even pop culture.

You will have 6 BACON tutorials available this term. Each time you complete a BACON tutorial, you will also complete a brief multiple choice post-BACON quiz *(the quiz will be built into the tutorials)*. For each tutorial you complete with a quiz grade of at least 75% you will earn 1 additional exam point that will be added to the sum of your midterm grades.

<table>
<thead>
<tr>
<th>Tutorial Name</th>
<th>Release Date</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Groups and Reactivity Fundamentals</td>
<td>September 12</td>
<td>September 26</td>
</tr>
<tr>
<td>Alkenes & Alkynes</td>
<td>September 19</td>
<td>October 3</td>
</tr>
<tr>
<td>Stereochemistry & Chirality</td>
<td>October 10</td>
<td>October 24</td>
</tr>
<tr>
<td>Substitution Reactions</td>
<td>October 31</td>
<td>November 14</td>
</tr>
<tr>
<td>Elimination Reactions</td>
<td>October 31</td>
<td>November 14</td>
</tr>
<tr>
<td>Alcohols & Epoxides</td>
<td>December 5</td>
<td>December 15</td>
</tr>
</tbody>
</table>
To create your account visit bacon.chem.ucla.edu and click ‘Sign Up’. Follow the instructions and then register for the appropriate course. The Course Pin number is 143BREWIT.

The BACON system is simple and automated. You will receive emails when tutorials become available, in addition to reminders if you have not completed a tutorial as a deadline approaches.

The Department of Chemistry at the University of Vermont has decided to pre-pay the typical student fee for using BACON, so it will be available to you at no charge! Thanks Professor Landry!

No exam grades are dropped. The only valid excuses for missing an exam are medical or other true emergency situations. If you miss an exam for such a reason, you must inform me of it promptly, present appropriate documentation of your excuse, and receive formal approval to take a make up exam. If you miss an exam for any other reason, you will receive a grade of zero for that exam. The answers to exam problems will be posted after each exam. If you have any questions concerning the grading of an exam, you must see me within one week after the day the exam is returned to the class. Exams must be taken in ink to insure that you can get points for a grading error.

The lowest quiz score will be dropped and will be replaced by the average score of the nine remaining quizzes.

Religious Holidays: Students have the right to practice the religion of their choice. Each semester students should submit in writing to their instructors by the end of the second full week of classes their documented religious holiday schedule for the semester. Faculty must permit students who miss work for the purpose of religious observance to make up this work.
Tentative Outline of Course

Chapter 1. Chemical Bonding and Chemical Structure.
Sections: All sections
Suggested Problems: 1.3-1.6, 1.8, 1.9, 1.12, 1.13, 1.22-1.25, 1.30-1.32, 1.44, 1.48

Chapter 3. Acids and Bases: The curved arrow notation
Sections: 3.1-3.6
Suggested Problems: 3.1-3.15, 3.18, 3.19, 3.24-3.45, 3.54-3.55, 3.58

Chapter 2. Alkanes.
Sections: 2.1-2.5, 2.8
Suggested Problems: 2.1, 2.3-2.18, 2.23, 2.24, 2.26-2.39, 2.47-2.50

Chapter 4. Introduction to Alkenes: Structure and Reactivity
Sections: All sections
Suggested Problems: 4.2-4.10, 4.13, 4.14, 4.16-4.48, 4.50-4.60a, 4.61, 4.62, 4.64-4.67

Chapter 5. Addition Reactions of Alkenes
Sections: All sections
Suggested Problems: 5.1-5.52a, 5.52d-g

Chapter 6. Principles of Stereochemistry
Sections: All sections

Chapter 7. Cyclic Compounds: Stereochemistry of reactions
Sections: All Sections

Chapter 8. Noncovalent Intermolecular Interactions
Sections: 8.1-8.3
Suggested Problems: 1-8, 15, 28, 32

Chapter 9. The Chemistry of Alkyl Halides
Sections: All Sections
Suggested Problems: 1-5, 11-16, 21-25, 44c,d,e,f, 45a-e, 46b-f, 49, 50a,c, 51-56, 61, 67

Chapter 10. The Chemistry of Alcohols and Thiols
Sections: 10.1-10.7
Suggested Problems: 3-17, 19-21, 23-26, 28, 30-31, 38-40, 45, 47-51, 57, 59, 67, 68

Sections 11.1-11.6, 11.8, 11.10, and Chapter 14 Section 14.8
Suggested Problems: 1-28, 32, 38-40a,b,d, 44-45c-j, 46, 48, 50, 51, 53-60, 61a-c,e-k, 62-65, 69, 70, 72, 74, 77, 79, 80

Concepts you must understand from High School / General Chemistry:

- Properties of covalent bonds
- The octet rule
- Structural isomers
- Lewis dot structures
- Formal charges
- Resonance
- Electronegativity and bond polarity
- VSEPR (Valence Shell Electron Pair Repulsion)
- Hybridization

Key’s to success in Organic Chemistry:

- Do not try to cram!
- You will see many new concepts in this course. Try to write out an explanation of the concepts in your own words as if explaining them to someone else.
- Work as many practice problems as possible. Practice problem reinforce the new concepts and are the only way to test your understanding of the material.
- Do not look at a problem’s answer until you have really tried the problem. After seeing the answer it often seems obvious and you may assume you understand.
- When you get a problem wrong, try to understand where your thinking was in error and attempt to identify what concept you missed.
- Ask questions!
- Come to office hours or make an appointment with me to resolve any questions early!
- Review the material frequently.