Soil CO$_2$ Flux in Short Rotation Willow Biomass Crop Across 21-year Chronosequence as Affected by Continuous Production and Tear Out Treatments

Renato S. Pacaldo1, Timothy A. Volk1, Lawrence P. Abrahamson1, and Russell D. Briggs1

1Department of Forest and Natural Resource Management, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210
Overview

- Introduction
- Materials and Methods
 - Soil CO₂ flux measurement instruments
 - Site location, sampling plots lay-out
 - Procedure for CO₂ flux measurements
- Results
 - Soil CO₂ flux pattern on summer, fall, winter, and spring
 - Relationship between soil CO₂ flux and temperature and moisture
 - Accumulated soil CO₂ flux over 1 year for continuous production and tear out treatments
 - Accumulated CO₂ flux from roots over 1 year
 - Carbon balance in continuous production and tear out plots
- Conclusion
Introduction

Willow biomass crop production system:

Carbon sequestration?
Carbon neutral?
Low carbon fuel source?
Worse than fossil fuel?
Life Cycle Analysis (LCA) (Heller et al. 2003):

Willow biomass crops: low carbon fuel source
- $3.7 \text{ Mg } \text{CO}_2\text{eqv} \text{ ha}^{-1}$ emissions at the end of 7 rotations

Willow biomass crops: carbon neutral (Keoleian & Volk, 2005)
However, the previous LCA and subsequent study:

- no information available on belowground respiration (i.e. soil CO$_2$ flux) during willow production

- no estimates on CO$_2$ emissions when roots and stump were ground into soil after termination of willow plantation

major sources of CO$_2$ emissions during entire cycle of willow production; hence, important data in the life cycle analysis (LCA)
Objectives

- Compare soil CO$_2$ flux between continuous production and tear out treatments
- Determine C balance in existing willow crops (Salix dasyclados), which have been in production for 6, 13, 15, and 20 years
 - Estimate the amount of root respiration
 - Determine CO$_2$ emission and C sequestration in newly established willow plantation
Why important?

- Rates of CO$_2$ flux influence GHG fraction in atmosphere
- Need to adjust and refine previous LCA for willow biomass crops
- Inform the ongoing debate on the GHG potential of willow production system
Materials and Methods
Automated soil CO$_2$ flux monitoring equipments

LI-8100 & Multiplexer (LI-8150)

http://www.licor.com/env/products/soil_flux/

Survey Chamber

Long-Term Chamber (LI-8100-104)
Soil temperature and moisture measurements

Temperature Probe

Soil Moisture Probe
Site location

3 sites at Tully and 1 site at Lafayette, NY
Experimental Design

Randomized Complete Block Design (RCBD)
- Two treatments: continuous production and tear out
- 4 blocks (replication) for each site
- Two subsamples, randomly assigned, in each block located between two double row and within double row

For comparison of annual CO$_2$ emissions by age, we used four existing willow plantations (Salix dasyclados) sites: 6, 13, 15, and 20 years old.
We conducted field measurements on belowground biomass and SOC before treatment application:

- All four willow fields (age: 5, 12, 14, & 20) located in Tully and Lafayette
 - No significant differences in soil organic carbon (SOC) to 45 cm depth, and foliage and coarse root biomass production
- No significant differences in fine roots biomass in three sites (age 5, 14, & 20) located in Tully; Lafayette site (age 12), highest & significantly different.

- NO differences in SOC
- NO differences in biomasses and coarse roots and foliage
- NO differences in fine root biomass for Tully sites

suggest that any differences in soil CO₂ flux across the four willow field could be due to age
Treatment Application

- harvesting on early spring 2010
- Allowed to regrow (continuous production treatment)
- Ground up (tear out treatment)
Six months after treatment application......

- continuous production treatment plots
- tear out treatment plots
same age across the four willow fields because we cut them at the same time

age: 6, 13, 15, and 20 years old across four willow fields
Soil CO$_2$ flux measurement procedure

8” dia. PVC pipe as soil collars

Root respiration = total respiration – heterothropic respiration

heterothropic respiration (

i.e CO$_2$ emissions from soil fauna and microorganisms

Between 2 double rows

Within double row

(total respiration (i.e heterothropic respiration and root respiration)
Survey measurements to capture CO$_2$ flux spatial variation

Summer 2010

Tear Out Treatment

Continuous Production Treatment
...to capture spatial variation within the measurement plots

Fall 2010
Survey measurements on winter

2-3 ft deep snow in winter
2010-11
Continuous measurements to capture temporal variation of soil CO$_2$ flux

Measurements in tear out and continuous production plots on summer 2010
Measurements continued until early winter
Results and Discussion
Soil CO$_2$ flux pattern over the seasons across 4 sites
Strong relationship between soil CO$_2$ flux and soil temperature

![Graph showing the relationship between monthly mean soil CO$_2$ flux and monthly mean soil temperature over a period from May 2010 to March 2011. The graph includes data for Tear Out (TO) and Continuous Production (CP) treatments, as well as soil temperature data for both treatments.](image-url)
No relationship between soil CO$_2$ flux and soil moisture
Cumulative amounts of soil CO$_2$ flux over 1 year based on monthly estimates

![Graph showing cumulative CO$_2$ emissions over the age of willow biomass crop.](image)
tear out plots on late fall & before heavy snowfall (7 mos. Later since treatment applied)

Exposed fine roots by frost heaving
Root respiration constitutes about 1/3 of total soil CO$_2$ emission.
Carbon Balance

Sources of C sequestration: leaves, stems, fine roots, coarse root, belowground stool

Some values for fine root turnover

- *Salix viminalis*: 4.9 to 5.8 yr\(^{-1}\) (Rytter & Rytter 1998; Rytter 1999)
- Hybrid poplar: 0.9 to 1.8 yr\(^{-1}\) (Block et al., 2006)
- Sugar maple: 2.2 yr\(^{-1}\) (Hendrick and Pregitzer, 1992)
- Pines: 0.2 to 5.0 yr\(^{-1}\) (Schoetttle and Fahey, 1994)

I used 2.5 as fine root turnover rate

<table>
<thead>
<tr>
<th>SRWC Age</th>
<th>Foliage (odt ha(^{-1}) yr(^{-1}))</th>
<th>Fine Root (odt ha(^{-1}) yr(^{-1}))</th>
<th>Total</th>
<th>CO2 Eq. (ton ha(^{-1}) yr(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2.6</td>
<td>5.9 x 2.5 = 14.7</td>
<td>17.3</td>
<td>31.7</td>
</tr>
<tr>
<td>13</td>
<td>2.9</td>
<td>9.2 x 2.5 = 23.0</td>
<td>25.9</td>
<td>47.5</td>
</tr>
<tr>
<td>15</td>
<td>3.7</td>
<td>6.3 x 2.5 = 15.7</td>
<td>19.4</td>
<td>35.6</td>
</tr>
<tr>
<td>20</td>
<td>2.6</td>
<td>7.2 x 2.5 = 18.0</td>
<td>20.6</td>
<td>37.8</td>
</tr>
</tbody>
</table>
C Balance for continuous production

<table>
<thead>
<tr>
<th>SRWC Age</th>
<th>Measured CO₂ Emissions</th>
<th>Measured CO₂ Sequestration</th>
<th>Net CO₂ Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>32</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>38</td>
<td>47</td>
<td>-9</td>
</tr>
<tr>
<td>15</td>
<td>33</td>
<td>36</td>
<td>-3</td>
</tr>
<tr>
<td>20</td>
<td>28</td>
<td>38</td>
<td>-10</td>
</tr>
</tbody>
</table>

Fine root turnover rate of 2.3 a year to offset the accumulated CO₂ emissions on 1st yr after coppice
C Balance for tear out

<table>
<thead>
<tr>
<th>Age</th>
<th>Total CO2 Emission</th>
<th>Total CO2 Sequestration</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-yr old</td>
<td>26.99</td>
<td>0</td>
</tr>
<tr>
<td>13-yr old</td>
<td>29.51</td>
<td>0</td>
</tr>
<tr>
<td>15-yr old</td>
<td>25.02</td>
<td>0</td>
</tr>
<tr>
<td>20-yr old</td>
<td>28.6</td>
<td>0</td>
</tr>
</tbody>
</table>
Comparing tear out treatment with 1-yr old willow crop with cover crop and without cover crop

Total CO₂ Flux (ton ha⁻¹ yr⁻¹)

-6-yr old
-13-yr old
-15-yr old
-20-yr old
-1-cover crop
-1-no cover crop

-30
-20
-10
0
10
20
30
40

total CO2 emission
total CO2 sequestration
Conclusion

- One year after treatment application: higher CO$_2$ flux in continuous production than tear out
- Soil CO$_2$ flux all-year round; but, very low flux during winter
- Increased soil CO$_2$ flux at young to middle age, then stabilized at mature age
- Root respiration is about 25-30 % of total soil respiration (i.e. heterothropic and autothropic respiration)
Using fine roots and foliage as the only sources of C sink, soil CO$_2$ emissions are offset resulting in negative C balance in willow production system across 21-year chronosequence.

After willow crop termination, about 2/3 of soil CO$_2$ emissions can be offset by placing cover crop and establishment of new willow plantation.
Future Directions

- Continue data collection for the second and third growing seasons
- Field investigation of fine root turn-over rates across the 21-year short rotation willow biomass crop chronosequence
- CO_2 flux investigation should be expanded to other management practices (e.g. fallow and cover cropping) after SRWC plantation termination
Acknowledgment

This research is funded by USDA CSREES

Assistants:
Jacob Bakowski, Devin Mc Bride, Tyler Harvey, Gabe Kellman, and Eric Fabio
Thank You!