Carbon Loss in Mineral Soil Horizons: The Effects of 120 Years of Forest Harvesting in New England

Rachel Neurath and Andrew Friedland
Department of Earth Sciences and Environmental Studies Program
Dartmouth College

Woody Biomass Energy Research Symposium for the Northern Forest
April 28, 2011
1) Introduction
 i) New England forests
 ii) The soil carbon budget
 iii) How forest harvesting disrupts the soil carbon budget

2) Objectives

3) Study Site

4) Methods

5) Results

6) Significance
New England Forests

Should we manage New England Forests:

• As a Carbon Sink?

• As an Energy Source?
New England Forests: Carbon Storage

Introduction | Objectives | Study Sites | Methods | Results | Significance

Image from the USDA Natural Resources Conservation Service
Benefits of bioenergy:

• energy independence
• replacement of fossil fuels
• may improve local economy
• carbon neutral???

Large-Scale Bioenergy Production: Biogas Conversion at Middlebury College

http://www.middlebury.edu/sustainability/energy-climate/biomass
The Soil Carbon Budget

Organic Horizon: 525 Gt C

Mineral Horizons: 1975 Gt C

Total Soil Carbon Pool: 2,500 Gt C

Soil is a major global carbon reservoir

- Atmosphere: 800 Gt C
- Plant Biomass: 500 Gt C
- Organic Horizon: 525 Gt C
- Mineral Horizons: 1975 Gt C

Introduction | **Objectives** | **Study Sites** | **Methods** | **Results** | **Significance**
Forest harvesting disrupts the soil carbon budget

Result: increased soil respiration \rightarrow increased CO_2 output to the atmosphere

How much?
For how long?
From where?
Forest Harvesting and the Soil Carbon Budget

Introduction | **Objectives** | **Study Sites** | **Methods** | **Results** | **Significance**

15 yrs | 64 yrs

Forest Floor

Mineral Horizons

How does this compare with New England?

New Hampshire

Nova Scotia (northeastern red spruce)

Diochon and Kellman (2009, Fig. 1)
1. Determine the rates of depletion and recovery of carbon over time since harvesting for New England forest soils
Objectives

1. Determine the rates of depletion and recovery of carbon over time since harvesting for New England forest soils

1. Begin to evaluate the mechanisms involved in release of mineral soil carbon
Objectives

1. Determine the rates of depletion and recovery of carbon over time since harvesting for New England forest soils

1. Begin to evaluate the mechanisms involved in release of mineral soil carbon

1. Compare results with other studies to determine the extent of the applicability of soil carbon loss and recovery models
Bartlett Experimental Forest, Bartlett, NH

- 1050 ha mixed northern hardwood forest
- Soils: spodosols underlain by granitic glacial till
- History: extensive harvesting 120 yrs ago for railroad, subsequent harvests for fuel and wood products
Methods

Chronosequence: reconstructing the past

• 3 quantitative soil pits per site:
 • Sample to 60 cm depth below O horizon

• Analysis:
 • Total C and N
 • δ^{13}C and δ^{15}N
Results: 1. Carbon Loss and Recovery

Total Carbon by Depth Interval
Results: 2. Evaluate the Mechanisms

Increased microbial respiration
Results: 3. Comparison to Other Studies

![Graph showing comparison of total C (Mg/ha) across different stand ages for Bartlett, NH and Nova Scotia.](graph.png)
Significance

• Mineral soil carbon depletion occurs for 70+ years after harvesting

• Trends are similar to Nova Scotia study, but indicate regional variation

• Increasing forest harvesting could increase the net CO$_2$ flux from mineral soil horizons to the atmosphere for over 100 years after harvest
Acknowledgements:

The Northeastern States Research Cooperative to A. Friedland

Bill Leak and Chris Costello, Bartlett Experimental Forest, USDA Forest Service

Professors Andrew Friedland, Xiaohong Feng, Meredith Kelly

Sample Analysis: Paul Zietz and Anthony Faiia

Field Assistance: Chelsea Vario and Matt Trueheart

The Dartmouth College Earth Sciences Department
C/N Ratio

Depth Below Organic Horizon (cm)

C/N Ratio

- Old Growth
- 75-yr
- 50-yr
- 25-yr
- 3-yr
\[\delta^{13}C \text{ and } \delta^{15}N: \]

\[\delta(\%) = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000 \]

Where:

\[R = \frac{^{13}C}{^{12}C} \text{ or } \frac{^{15}N}{^{14}N} \]
Causes of 13C variation in soils:

1. Microbial fractionation (decomposition) \Rightarrow 13C enrichment
2. Variations in atmospheric 13C
3. Variations in vegetation (C_3 vs. C_4 plants)
4. Preferential preservation of biochemical constituents
5. Changes in plant water-use efficiency (long-term)
6. In-situ translocation of organic C