Average Electrostatic Potential over a Spherical Surface

EE 141 Lecture Notes
Topic 8

Professor K. E. Oughstun
School of Engineering
College of Engineering & Mathematical Sciences
University of Vermont

2014
Consider a spherical surface S of radius $a > 0$ carrying a uniform surface charge density φ_s with total charge

$$Q = 4\pi a^2 \varphi_s.$$

Because of the spherical symmetry of the surface charge distribution, the electrostatic field vector is radially directed from the center O of the sphere and is a function of the radial distance R alone, so that

$$\mathbf{E}(r) = \hat{\mathbf{r}} R E(R).$$
By Gauss’ law, the electric field intensity at an observation point P a distance $R > a$ from the center O of the sphere is given by

$$E(R) = \frac{Q}{4\pi \epsilon_0 R^2},$$

and the absolute potential is

$$V(R) = \frac{Q}{4\pi \epsilon_0 R}.$$

The potential is also given by Coulomb’s law [Eq. (4.5)] as

$$V(R) = \oint_S \frac{\rho_s}{4\pi \epsilon_0 r} \, d\alpha$$

where $\rho_s = Q/4\pi a^2$.
Equating these two expressions for $V(R)$ when $R > a$ yields

$$\frac{Q}{4\pi\varepsilon_0 R} = \frac{Q}{4\pi a^2} \oint_S \frac{da}{4\pi\varepsilon_0 r}, \quad (1)$$

which then results in the geometrical identity

$$\frac{1}{R} = \frac{1}{4\pi a^2} \oint_S \frac{da}{r}, \quad R > a \quad (2)$$

The average value of $\frac{1}{r}$ taken over a spherical surface S, where r is the distance from a point on the surface S to an exterior point P, is equal to $\frac{1}{R}$, where R is the distance from the center O of the sphere S to P.
If one now removes the surface charge density \(\rho_s = Q/4\pi a^2 \) and places a point charge \(Q \) at the exterior point \(P \), then the potential at the center \(O \) of the sphere is given by the left-hand side of Eq. (1). The right-hand side of this equation is then just the average potential on the spherical surface. Hence:

The average potential over a spherical surface due to a point charge situated outside is equal to the potential at the center of the sphere.

Because of the principle of superposition, one then has the general result:

Mean-Value Theorem: The average potential over any spherical surface is equal to the potential at the center of the sphere if there are no charges inside the sphere.
As a corollary of this result, one has that:

It is impossible to have a potential maximum or minimum in a charge-free region.

In order to show this, suppose that there is a potential maximum (or minimum) at some point P' in a charge-free region of space. The average potential over some sphere centered on P' must then be lower (or higher) than the potential at P', which contradicts the mean-value theorem.

Notice that this corollary is also a consequence of Laplace’s equation [see the discussion following Eq. (4.6)].
Consider again a spherical surface S of radius a carrying a uniform surface charge density $\rho_s = Q/4\pi a^2$ with total charge Q.

Application of Gauss’ law [see Eq. (1.16)] to any concentric spherical surface S' of radius $R < a$ shows that, at any point P inside S, the electrostatic field intensity is zero because there isn’t any enclosed charge.
The electrostatic potential \(V(R) \) at any point \(P \) interior to \(S \) must then be equal to the potential at the surface, so that

\[
V(R) = \frac{Q}{4\pi\varepsilon_0 a} = \int_S \frac{\varrho_s}{4\pi\varepsilon_0 r} \, da = \frac{Q}{4\pi a^2} \int_S \frac{da}{4\pi\varepsilon_0 r},
\]

which results in the geometrical identity

\[
\frac{1}{a} = \frac{1}{4\pi a^2} \int_S \frac{da}{r}, \quad R < a
\]
If one now removes the surface charge density $\varrho_s = Q/4\pi a^2$ and places a point charge Q at the interior point P, then the final expression in Eq. (3) is seen to be the average potential taken over the spherical surface S. Hence:

The average potential taken over a spherical surface of radius a containing a point charge Q in its interior is equal to $Q/4\pi \epsilon_0 a$ irrespective of the position of the charge Q inside the surface.

Because of the principle of superposition, one then has the general result:

The average electrostatic potential taken over any spherical surface is equal to $\frac{Q}{4\pi \epsilon_0 a}$, where a is the radius of the sphere and Q is the total enclosed charge, provided that there is no charge outside the sphere.