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Department of Mathematics and Statistics, University of Vermont



Data Assimilation as Synchronization of Model Forecasts to Observations 4

Christiaan Huygens (1629-1695)
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Christiaan Huygens (1629-1695)
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Huygens Pendulum Clocks (1660)
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Huygens Pendulum Clocks (1660)

British Royal Society: “Occasion was taken here by some of the members to doubt the
exactness of the motion of these watches at sea, since so slight and almost insensible
motion was able to cause an alteration in their going. ”
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Nonlinear Systems

Chaos: ‘When the present determines the future, but the approximate
present does not approximately determine the future.’ –Lorenz
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This Game is Completely Deterministic
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This Game is Completely Deterministic

“You can’t fool television viewers
with dancing girls and flashing
lights.” –Bob Barker
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Linear vs. Nonlinear

Error

Time

chaos: 
difference in paths 

grows exponentially
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Why is Chaos a Problem?

Double Pendulum
l 4 model variables (position and velocity of each arm)

l model approximates mother nature’s rules

(Loading Movie)
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Why is Chaos a Problem?

Double Pendulum
l 4 model variables (position and velocity of each arm)

l model approximates mother nature’s rules

l prediction time w/supercomputer?
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Why is Chaos a Problem?

Double Pendulum
l 4 model variables (position and velocity of each arm)

l model approximates mother nature’s rules

l prediction time w/supercomputer < 10 seconds!

Earth’s atmosphere
l 1,000,000,000 model variables (need values for all 1 billion!)

• 7 values per location (3D wind, temp, pressure, humidity, ozone)
• 1,500,000 locations on surface
• 100 vertical layers up to the edge of space
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A Mathematician’s Research Goal:

Generate better forecasts without improving
the initial conditions or the model physics
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A Mathematician’s Research Goal:

Generate better forecasts without improving
the initial conditions or the model physics

by altering the method by which predictions
are generated.
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Data Assimilation Cartoon
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Three Experiments

l An experimental analog to Lorenz’s 1963 model

l Stalking observations with a numerical trajectory

l Online empirical correction of model error

Department of Mathematics and Statistics, University of Vermont
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Lorenz (1963)

dx
dt

= σ(y− x)

dy
dt

= ρx− y− xz

dz
dt

= xy−βz

Department of Mathematics and Statistics, University of Vermont
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Breeding, Growth of Perturbations (Toth and Kalnay 1993)

t1

t2

t3
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Breeding, Growth rate of Perturbations (Yang et al. 2006)
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Duration of Regimes (Flow Reversals)
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Duration of Regimes (Flow Reversals)
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Thermal Convection Loop (An Experiment!)

A B

C
Fluid
flow

f  d  b a  c  e 
gravity

heat sink

heat source

R=38cm
r=2cm
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Typical Observations of Delta Temp (@9 - 3 o’clock) ≈ y
From my Undergraduate Thesis: Stable Convection
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Typical Observations of Delta Temp (@9 - 3 o’clock) ≈ y
From my Undergraduate Thesis: Chaotic Convection
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Reconstructing an Attractor
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Only!!! Observations of Delta Temp (@9 - 3 o’clock) ≈ y
From my Undergraduate Thesis: Melted Experiment
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Kameron’s Undergraduate Thesis (a classier operation...)
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Kameron’s Undergraduate Thesis (a classier operation...)

l Experiment will be used as a testbed for improving data assimilation
and ensemble forecasting using simple (Lorenz 3-D) and sophisticated
(CFD 106-D) models.

l We can control the climate (i.e. visit specified regions of state space
experimentally)!

Department of Mathematics and Statistics, University of Vermont



Data Assimilation as Synchronization of Model Forecasts to Observations 39

Three Experiments

l An experimental analog to Lorenz’s 1963 model

l Stalking observations with a numerical trajectory

l Online empirical correction of model error

Department of Mathematics and Statistics, University of Vermont



Data Assimilation as Synchronization of Model Forecasts to Observations 40

A Mathematical Question about Prediction:

How long can we shadow a trajectory of the physical system
H with a trajectory of the model L?

time

true state of physical system

model prediction reasonable estimates of truth
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H with a trajectory of the model L?
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Shadowing a Physical System with an Ensemble

time

true state of physical system

reasonable estimates of truth
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Shadowing a Physical System with an Ensemble

time

true state of physical system

ensemble of initial conditions
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Shadowing a Physical System with an Ensemble

time

true state of physical system

reasonable estimates of truth

ensemble of model forecasts
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Shadowing a Physical System with an Ensemble
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Shadowing a Physical System with an Ensemble

time

true state of physical system

reasonable estimates of truth

ensemble of model forecasts

small uncertainty
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Shadowing a Physical System with an Ensemble

time

true state of physical system

reasonable estimates of truth

ensemble of model forecasts

lar4e uncertainty
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Shadowing a Physical System with an Ensemble

time

true state of physical system

reasonable estimates of truth

ensemble of model forecasts

good predictions
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Shadowing a Physical System with an Ensemble

time

true state of physical system

reasonable estimates of truth

ensemble of model forecasts

good predictions
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Shadowing a Physical System with an Ensemble

time

true state of physical system

reasonable estimates of truth

ensemble of model forecasts

4ood predictions
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Shadowing a Hyperbolic System

time

true state of physical system

reasonable estimates of truth

ensemble of model forecasts

contracting
exp

an
ding

(Loading Movie) (Loading Movie)
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Shadowing a Non-Hyperbolic System
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Shadowing a Non-Hyperbolic System

time

unstable dimension
increases

contractingexp
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Shadowing a Non-Hyperbolic System

time

unstable dimension
increases

contractin0e12
an

din0

If the number of expanding directions increases,
shadowing fails.
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New Idea: Stalking a non-hyperbolic system H

!

ensemble of forecasts
inated ensemble of forecasts

Inflate the contracting dimensions of the ensemble
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Cone of Uncertainty

Stalking: inflate the cone, but only in dimensions whose
uncertainty is currently shrinking with time.
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Shadowing fails (top), stalking succeeds (bottom)
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Stalking in Lorenz ’96 Model
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Danforth and Yorke. Making Forecasts for Chaotic Physi-
cal Processes. Physical Review Letters, 2006.
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Three Experiments

l An experimental analog to Lorenz’s 1963 model

l Stalking observations with a numerical trajectory

l Online empirical correction of model error
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Empirical Model Error Correction Background
Leith (1978), first to formulate state-dependent correction procedure.

Given a model ẋ = M
(
x
)
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Empirical Model Error Correction Background
Leith (1978), first to formulate state-dependent correction procedure.

Given a model ẋ = M
(
x
)

and a “true” solution xt (e.g. reanalysis)
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Empirical Model Error Correction Background
Leith (1978), first to formulate state-dependent correction procedure.

Given a model ẋ = M
(
x
)

and a “true” solution xt (e.g. reanalysis)

l sought an improved model of the form: ẋ = M
(
x
)
+Lx+ c
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Empirical Model Error Correction Background
Leith (1978), first to formulate state-dependent correction procedure.

Given a model ẋ = M
(
x
)

and a “true” solution xt (e.g. reanalysis)

l sought an improved model of the form: ẋ = M
(
x
)
+Lx+ c

where c corrects the state-independent model error (bias)
and Lx corrects the state-dependent model error

l by minimizing the mean square tendency error of the improved model,
< g>g > where

g = ẋt−
(

M
(
xt)+Lxt + c

)
with respect to L and c.
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Generating Time Series of Forecasts and Errors

xt(t)

x6
f(t+1)

xt(t+1)

1982-1986 NCEP Reanalysis

x6
f(t+2)

xt(t+2)

SPEEDY 
forecasts

-

=

-

analysis
corrections     x6

a(t+1)    x6
a(t+2)!!
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I. State-Dependent Error Estimation

Leith (1978) Empirical Correction Operator
l Forecast state covariance: Cxf

6xf
6
=< xf′

6 xf′>
6 >

l Correction & forecast state cross covariance: Cδxa
6xf

6
=< δxa′

6 xf′>
6 >
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I. State-Dependent Error Estimation

Leith (1978) Empirical Correction Operator
l Forecast state covariance: Cxf

6xf
6
=< xf′

6 xf′>
6 >

l Correction & forecast state cross covariance: Cδxa
6xf

6
=< δxa′

6 xf′>
6 >

Leith’s correction operator, given by L = Cδxa
6xf

6
Cxf

6xf
6

−1, provides a
state-dependent correction:

ẋ = M
(
x
)
+

[
Lx′+ c

] 1
6hr

where c =< δxa
6 >
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I. State-Dependent Error Estimation

Leith (1978) Empirical Correction Operator
l Forecast state covariance: Cxf

6xf
6
=< xf′

6 xf′>
6 >

l Correction & forecast state cross covariance: Cδxa
6xf

6
=< δxa′

6 xf′>
6 >

Leith’s correction operator, given by L = Cδxa
6xf

6
Cxf

6xf
6

−1, provides a
state-dependent correction:

ẋ = M
(
x
)
+

[
Lx′+ c

] 1
6hr

where c =< δxa
6 >

Problem: Direct computation of Lx′ requires O(N3) floating point oper-
ations every time step!
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I. State-Dependent Error Estimation

First step in our new approach:
Low-Dimensional Approximation based on regression

l Singular Value Decomposition (SVD) of the sparse analysis correction
& state cross covariance: Cδxa

6xf
6
= UΣV>

l identifies pairs of spatial patterns or EOFs (uk and vk) that explain as
much of possible of the mean-squared temporal covariance between
the analysis correction and state anomalies.

Department of Mathematics and Statistics, University of Vermont
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I. State-Dependent Error Estimation
Correction (color) and state (contour) coupled signals

u
v3

3
c

l u3 suggests shifting the anomaly v3 northeast (over the dependent sample)
Department of Mathematics and Statistics, University of Vermont
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I. State-Dependent Error Estimation
Correction (color) and state (contour) coupled signals

u

v2

2
c

l u2 suggests damping the anomaly v2 (over the dependent sample)
Department of Mathematics and Statistics, University of Vermont
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I. State-Dependent Error Estimation

Second step in our new approach:
Leith’s empirical correction involves solving Cxf

6xf
6
w = x′ for w at each

time step.
Lx′ = Cδxa

6xf
6

Cxf
6xf

6

−1x′
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I. State-Dependent Error Estimation

Second step in our new approach:
Leith’s empirical correction involves solving Cxf

6xf
6
w = x′ for w at each

time step.
Lx′ = Cδxa

6xf
6

Cxf
6xf

6

−1x′

= Cδxa
6xf

6
w
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I. State-Dependent Error Estimation

Second step in our new approach:
Leith’s empirical correction involves solving Cxf

6xf
6
w = x′ for w at each

time step.
Lx′ = Cδxa

6xf
6

Cxf
6xf

6

−1x′

= Cδxa
6xf

6
w

= UΣV>w
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I. State-Dependent Error Estimation

Second step in our new approach:
Leith’s empirical correction involves solving Cxf

6xf
6
w = x′ for w at each

time step.
Lx′ = Cδxa

6xf
6

Cxf
6xf

6

−1x′

= Cδxa
6xf

6
w

= UΣV>w

≈
K

∑
k=1

ukσkv>k ·w
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I. State-Dependent Error Estimation

Second step in our new approach:
Leith’s empirical correction involves solving Cxf

6xf
6
w = x′ for w at each

time step.
Lx′ = Cδxa

6xf
6

Cxf
6xf

6

−1x′

= Cδxa
6xf

6
w

= UΣV>w

≈
K

∑
k=1

ukσkv>k ·w

However, only the component of w in the space spanned by the right
singular vectors vk can contribute to the empirical correction!!
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II. State-Dependent Correction

6-hr forecasts
debiased low-d corrected

!=0.2 U-wind 
Error (shades)

 and State (contour)

RMS reduced by 14%
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II. State-Dependent Correction

6-hr forecasts
debiased low-d corrected

!=0.95 Temp 
Error (shades)

 and State (contour)

RMS reduced by 21%
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Model Error Correction Results
l 3-day RMSE of online corrected model equal to 1-day RMSE of orig-

inal (better than offline correction)
l Climate statistics of model are improved
l SVD modes may suggest physically meaningful errors
l Works easily with existing data assimilation and ensemble schemes

(requires only the analysis increments for sampling)
l Techniques could be used to improve model predictions of any

physical system.

Danforth, Kalnay, Miyoshi. Estimating and Correcting Global Weather
Model Error. Monthly Weather Review, 2007.

Danforth and Kalnay. Using Singular Value Decomposition to Param-
eterize State-Dependent Model Error. Journal of the Atmospheric Sci-
ences, 2008. (Lorenz ’96 model)

Danforth and Kalnay. The Impact of Online Empirical Model Correc-
tion on Nonlinear Error Growth. Geophysical Research Letters, sub-
mitted.
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