Game story space of professional sports: Australian rules football

Dilan Patrick Kiley,1,4 Andrew J. Reagan,1,4 Lewis Mitchell,2,† Christopher M. Danforth,1,‡ and Peter Sheridan Dodds1,∥

1Department of Mathematics & Statistics, Vermont Complex Systems Center, Computational Story Lab, & Vermont Advanced Computing Core, University of Vermont, Burlington, Vermont 05401, USA
2School of Mathematical Sciences, North Terrace Campus, University of Adelaide, SA 5005, Australia

(Received 25 June 2015; revised manuscript received 16 March 2016; published 27 May 2016)

Sports are spontaneous generators of stories. Through skill and chance, the script of each game is dynamically written in real time by players acting out possible trajectories allowed by a sport’s rules. By properly characterizing a given sport’s ecology of “game stories,” we are able to capture the sport’s capacity for unfolding interesting narratives, in part by contrasting them with random walks. Here we explore the game story space afforded by a data set of 1310 Australian Football League (AFL) score lines. We find that AFL games exhibit a continuous spectrum of stories rather than distinct clusters. We show how coarse graining reveals identifiable motifs ranging from last-minute comeback wins to one-sided blowouts. Through an extensive comparison with biased random walks, we show that real AFL games deliver a broader array of motifs than null models, and we provide consequent insights into the narrative appeal of real games.

DOI: 10.1103/PhysRevE.93.052314

I. INTRODUCTION

While sports are often analogized to a wide array of other arenas of human activity, particularly war, well-known story lines, and elements of sports are conversely invoked to describe other spheres. Each game generates a probabilistic, rule-based story [1], and the stories of games provide a range of motifs which map onto narratives found across the human experience: dominant, one-sided performances; back-and-forth struggles; underdog upsets; and improbable comebacks. As fans, people enjoy watching suspenseful sporting events, unscripted stories, and following the fortunes of their favorite players and teams [2–4].

Despite the inherent story-telling nature of sporting contests, and notwithstanding the vast statistical analyses surrounding professional sports including the many observations of and departures from randomness [5–11], the ecology of game stories remains a largely unexplored, data-rich area [12]. We are interested in a number of basic questions such as whether the game stories of a sport form a spectrum or a set of relatively isolated clusters, how well models such as random walks fare in reproducing the specific shapes of real game stories, whether or not these stories are compelling to fans, and how different sports compare in the stories afforded by their various rule sets.

Here we focus on Australian Rules Football, a high-skills game originating in the mid-1800s. We describe Australian Rules Football in brief and then move on to extracting and evaluating the sport’s possible game stories. Early on, the game evolved into a winter sport quite distinct from other codes such as soccer or rugby while bearing some similarity to Gaelic football. Played as state-level competitions for most of the 1900s with the Victorian Football League (VFL) being most prominent, a national competition emerged in the 1980s with the Australian Football League (AFL) becoming a formal entity in 1990. The AFL is currently constituted by 18 teams located in five of Australia’s states.

Games run over four quarters, each lasting around 30 min (including stoppage time), and teams comprise 18 on-field players. Games (or matches) are played on large ovals typically used for cricket in the summer and of variable size (generally 135 to 185 m in length). The ball is oblong and may be kicked or handballed (an action where the ball is punched off one hand with the closed fist of the other) but not thrown. Marking (cleanly catching a kicked ball) is a central feature of the game, and the AFL is well known for producing many spectacular marks and kicks for goals [13].

The object of the sport is to kick goals, with the customary standard of highest score wins (ties are relatively rare but possible). Scores may be six points or one point as follows, some minor details aside. Each end of the ground has four tall posts. Kicking the ball (untouched) through the central two posts results in a “goal” or six points. If the ball is touched or goes through either of the outer two sets of posts, then the score is a “behind” or one point. Final scores are thus a combination of goals (six) and behinds (one) and on average tally around 100 per team. Poor conditions or poor play may lead to scores below 50, while scores above 200 are achievable in the case of a “thrashing” (the record high and low scores are 239 and 1). Wins are worth four points, ties two points, and losses zero.

Of interest to us here is that the AFL provides an excellent test case for extracting and describing the game story space of a professional sport. We downloaded 1310 AFL game scoring progressions from http://afltables.com (ranging from the 2008 season to midway through the 2014 season) [14]. We extracted the scoring dynamics of each game down to second-level resolution, with the possible events at each second being (1) a goal for either team, (2) a behind for either team, or (3) no score [15]. Each game thus affords a “worm” tracking the score differential between two teams. We will call these worms “game stories,” and we provide an example in Fig. 1. The game story shows that Geelong pulled away from Hawthorn, their...
run for around 112 to 132 min ($\sigma \simeq 4.8$ min). In comparing AFL games, we must therefore accommodate different game lengths. A range of possible approaches include dilation, truncation, and extension (by holding a final score constant), and we will explain and argue for the latter in Sec. IV.

B. Scoring across quarters

In postgame discussions, commentators will often focus on the natural chapters of a given sport. For quarter-based games, matches will sometimes be described as “a game of quarters” or “a tale of two halves.” For the AFL, we find that scoring does not, on average, vary greatly as the game progresses from quarter to quarter (we will, however, observe interesting quarter-scale motifs later on). For our game database, we find there is slightly more scoring done in the second half of the game (46.96 versus 44.91), where teams score one more point, on average, in the fourth quarter versus the first quarter (23.48 versus 22.22). This minor increase may be due to a heightened sense of the importance of each point as game time begins to run out, the fatiguing of defensive players, or as a consequence of having “learned an opponent” [12,16].

C. Probability of next score as a function of lead size

In Fig. 2 we show that, as for a number of other sports, the probability of scoring next (either a goal or behind) at any point in a game increases linearly as a function of the current lead size (the National Basketball Association is a clear exception) [10–12,17]. This reflects a kind of momentum gain within games and could be captured by a simple biased model with scoring probability linearly tied to the current lead. Other studies have proposed this linearity to be the result of a heterogeneous skill model [12], and, as we describe in the following section, we use a modification of such an approach.

D. Conditional probabilities for winning

We next examine the conditional probability of winning given a lead of size ℓ at a time point t in a game, $P_t(\text{Winning} \mid \ell)$. We consider four example time points, the end of each of the first three quarters and with 10 min left in game time, and plot the results in Fig. 3. We fit a sigmoid curve...
modified random walks, with each walk \(\ell \) composed of steps leading to the corresponding lead sizes at the four time points. Losing games after holding any of these leads \(\ell \) are the approximate corresponding lead sizes at the four time points as in Fig. 2. The dark blue curve is a sigmoid function to go in the game \(\ell \). Bins comprise the aggregate of every six leads as in Fig. 2. The dark blue curve is a sigmoid function to go in the game \(\ell \). Bins comprise the aggregate of every six leads as in Fig. 2. The dark blue curve is a sigmoid function to go in the game \(\ell \).

FIG. 3. Conditional probability of winning given a lead of size \(\ell \) at the end of the first three quarters (a–c) and with 10 min to go in the game (d). Bins comprise the aggregate of every six points as in Fig. 2. The dark blue curve is a sigmoid function of the form \([1 + e^{-k(-\ell - \ell_0)}]^{-1} \) where \(k \) and \(\ell_0 \) are fit parameters determined via standard optimization using the Python function scipy.optimize.curve_fit (Note that \(\ell_0 \) should be 0 by construction.) As a game progresses, the threshold for likely victory (winning probability 0.90, upper red lines) decreases as expected, as does a threshold for a close game (probability of 0.60, lower red line). The slope of the sigmoid curve increases as the game time progresses showing the evident greater impact of each point. We note that the missing data in panel (a) are a real feature of the specific 1310 games in our data set.

(see caption) to each conditional probability. As expected, we immediately see an increase in winning probability for a fixed lead as the game progresses.

These curves could be referenced to give a rough indication of an unfolding game’s likely outcome and may be used to generate a range of statistics. As an example, we define likely victory as \(P(\text{Winning} \mid \ell) > 0.90 \) and find \(\ell \approx 32, 27, 20, \) and 11 are the approximate corresponding lead sizes at the four time points. Losing games after holding any of these leads might be viewed as “snatching defeat from the jaws of victory.”

Similarly, if we define close games as those with \(P(\text{Winning} \mid \ell) \leq 0.60 \), we find the corresponding approximate lead sizes to be \(\ell \approx 6, 5, 4, \) and 2. These leads could function in the same way as the save statistic in baseball is used, i.e., to acknowledge when a pitcher performs well enough in a close game to help ensure their team’s victory. Expanding beyond the AFL, such probability thresholds for likely victory or uncertain outcome may be modified to apply to any sport and could be greatly refined using detailed information such as recent performances, stage of a season, and weather conditions.

III. RANDOM WALK NULL MODELS

A natural null model for a game story is the classic, possibly biased, random walk \([10, 18]\). We consider an ensemble of modified random walks, with each walk \(\ell \) composed of steps of \(\pm 6 \) and \(\pm 1 \), (2) dictated by a randomly drawn bias, (3) running for a variable total number of events, and (4) with variable gaps between events, all informed by real AFL game data. For the purpose of exploring motifs later on, we will create 100 sets of 1310 games.

An important and subtle aspect of the null model is the scoring bias, which we will denote by \(\rho \). We take the bias for each game simulation to be a proxy for the skill differential between two opposing teams, as in Ref. [12], though our approach involves an important adjustment.

In Ref. [12], a symmetric skill bias distribution is generated by taking the relative number of scoring events made by one team in each game. For example, given a match between two teams \(T_1 \) and \(T_2 \), we find the number of scoring events generated by \(T_1 \), \(n_1 \), and the same for \(T_2 \), \(n_2 \). We then estimate a posteriori the skill bias between the two teams as

\[
\rho = \frac{n_1}{n_1 + n_2}.
\]

In constructing the distribution of \(\rho \), \(f(\rho) \), we discard information regarding how specific teams perform against each other over seasons and years, and we are thus only able to assign skill bias in a random, memoryless fashion for our simulations. We also note that for games with more than one value of points available for different scoring events (as in six and one for Australian Rules Football), the winning team may register fewer scoring events than the losing one.

In Ref. [12] random walk game stories were then generated directly using \(f(\rho) \). However, for small time scales this is immediately problematic and requires a correction. Consider using such an approach on pure random walks. We of course have that \(f(\rho) = \delta(\rho - 1/2) \) by construction, but our estimate of \(f(\rho) \) will be a Gaussian of width \(\sim t^{-1/2} \), where we have normalized displacement by time \(t \). And while as \(t \to \infty \), our estimate of \(f(\rho) \) approaches the correct distribution \(\delta(\rho - 1/2) \), we are here dealing with relatively short random walks. Indeed, we observe that if we start with pure random walks, run them for, say, 100 steps, estimate the bias distribution, run a new set of random walks with these biases, and keep repeating this process, we obtain an increasingly flat bias distribution.

To account for this overestimate of the spread of skill bias, we propose the tuning of an input Gaussian distribution of skill biases so as to produce biased random walks whose outcomes best match the observed event biases for real games. We assume that \(f \) should be centered at \(\rho = 0.50 \). We then draw from an appropriate distribution of number of events per game and tune the standard deviation of \(f, \sigma \), to minimize the Kolmogorov-Smirnov (KS) statistic and maximize the \(p \) value produced from a two-tailed KS test between the resulting distribution of event biases and the underlying, observed distribution for our AFL data set.

We show the variation of \(D \) and the \(p \) value as a function of \(\sigma \) in Fig. 4. We then demonstrate in Fig. 5 that the \(\sigma \)-corrected distribution produces an observably better approximation of outcomes than if we used the observed biases approach of Ref. [12]. Because the fit for our method in Fig. 5 is not exact, a further improvement (unnecessary here) would be to allow \(f \) to be arbitrary rather than assuming a Gaussian.

With a reasonable estimate of \(f \) in hand, we create 100 ensembles of 1310 null games where each game is generated with (1) one team scoring with probability \(\rho \) drawn from the...
FIG. 4. Skill bias ρ represents a team’s relative ability to score against another team and is estimated \textit{a posteriori} by the fraction of scoring events made by each team Eq. (1). (a, b) Kolmogorov-Smirnov test D statistic and associated p-value comparing the observed output skill bias distribution produced by a presumed input skill distribution f with that observed for all AFL games in our data set, where f is Gaussian with mean 0.5 and its standard deviation σ is the variable of interest. For each value of σ, we created 1000 biased random walks with the bias ρ drawn from the corresponding normal distribution. Each game’s number of events was drawn from a distribution of the number of events in real AFL games (see text). Panel (b) is an expanded version of the shaded region in panel (a) with finer sampling. The black vertical dashed lines bound a plateau in the measured p-values, and the blue vertical dashed line is our estimated best fit of $\sigma \simeq 0.088$. We compare the resulting observed bias distribution with that of Ref. [12] in Fig. 5.

σ-corrected distribution described above; (2) individual scores being a goal or behind with probabilities based on the AFL data set (approximately 0.53 and 0.47); and (3) a variable number of events per simulation based on (a) game duration drawn from the approximated normal distribution described in Sec. II and (b) time between events drawn from a chi-squared distribution fit to the interevent times of real games.

For a secondary test on the validity of our null model’s game stories, we compute the variance σ^2 of the margin at each event number n for both AFL games and modified random walks (for the AFL games, we orient each walk according to home and away status, the default ordering in the data set). As we show in Fig. 6, we find that both AFL games and biased random walks produce game stories with $\sigma^2 \sim 1.236 \pm 0.012$ respectively. Collectively, AFL games thus have a tendency toward runaway score differentials, and while superdiffusive-like, this superlinear scaling of the variance can be almost entirely accounted for by our incorporation of the skill bias distribution f.

IV. MEASURING DISTANCES BETWEEN GAMES

Before moving on to our main focus, the ecology of game stories, we define a straightforward measure of the distance between any pair of games. For any sport, we define a distance measure between two games i and j as

$$D(g_i, g_j) = T^{-1} \sum_{t=1}^{T} |g_i(t) - g_j(t)|,$$

where T is the length of the game in seconds, and $g_i(t)$ is the score differential between the competing teams in game i at second t. We orient game stories so that the team whose score is oriented upwards on the vertical axis wins or ties [i.e., $g_i(T) \geq 0$]. By construction, pairs of games which have

FIG. 5. Comparison of the observed AFL skill bias distribution [balance of scoring events ρ given in Eq. (1), dashed blue curve] with that produced by two approaches: (1) We draw ρ from a normal distribution using the best candidate σ value with mean 0.50 as determined via Fig. 4 (solid red curve) and (2) we choose ρ from the complete list of observed biases from the AFL (hashed green curve, the replication method of Ref. [12]). For the real and the two simulated distributions, both ρ and $1 - \rho$ are included for symmetry. The fitted σ approach produces a more accurate estimate of the observed biases, particularly for competitive matches (ρ close to 0.50) and one-sided affairs. Inset: Upper half of the distributions plotted on a semi-logarithmic scale (base 10) revealing that the replication method of Ref. [12] also overproduces extreme biases, as compared to the AFL and our proposed correction using a numerically determined σ.

FIG. 6. Variance in the instantaneous margin as a function of event number for real AFL games (solid red curve) and biased random walks as described in Sec. III, (solid blue curve). We perform fits in logarithmic space using standard least squares regression (solid black curve for real games, dashed black for the null model). The biased random walks satisfactorily reproduce the observed scaling of variance. It thus appears that AFL games stories do not exhibit inherently superdiffusive behavior but rather result from imbalances between opposing teams.
a relatively small distance between them will have similar game stories. The normalization factor $1/T$ means the distance remains in the units of points and can be thought of as the average difference between point differentials over the course of the two games.

In the case of the AFL, due to the fact that games do not run for a standardized time T, we extend the game story of the shorter of the pair to match the length of the longer game by holding the final score constant. While not ideal, we observe that the metric performs well in identifying games that are closely related. We investigated several alternatives such as linearly dilating the shorter game and found no compelling benefits. Dilation may be useful in other settings, but the distortion of real time is problematic for sports.

In Fig. 7 we present the 10 most similar pairs of games in terms of their stories. These close pairs show the metric performs as it should and that, moreover, proximal games are not dominated by a certain type. Figures 7(a) and 7(b) demonstrate a team overcoming an early stumble, Figs. 7(e) and 7(f) showcase the victor repelling an attempted comeback, Figs. 7(q) and 7(r) exemplify a see-saw battle with many lead changes, and Figs. 7(s) and 7(t) capture blowouts: one team taking control early and continuing to dominate the contest.

V. GAME STORY ECOLOGY

Having described and implemented a suitable metric for comparing games and their root story, we seek to group games together with the objective of revealing large-scale characteristic motifs. To what extent are well-known game narratives, from blowouts to nail-biters to improbable comebacks, and potentially less well known story lines featured in our collection of games? And how does the distribution of real game stories compare with those of our biased random walk null model? (We note that in an earlier version of the present paper, we considered pure, unbiased random walks for the null model [19].)

A. AFL games constitute a single spectrum

We first compute the pairwise distance between all games in our data set. We then apply a shuffling algorithm to order games on a discretized ring so that similar games are as close to each other as possible. Specifically, we minimize the cost

$$C = \sum_{i,j \in N, i \neq j} d_{ij}^2 \cdot D(g_i, g_j)^{-1},$$

(3)

where d_{ij} is the shortest distance between i and j on the ring. At each step of our minimization procedure, we randomly choose a game and determine which swap with another game most reduces C. We use d_{ij}^2 by choice, and other powers give similar results.

In Fig. 8 we show three heat maps for distance D with (a) games unsorted, (b) games sorted according to the above minimization procedure, and (c) indices of sorted games cycled to reveal that AFL games broadly constitute a continuous spectrum. As we show below, at the ends of the spectrum are the most extreme blowouts, and the strongest comebacks: i.e., one team dominates for the first half and then the tables are flipped in the second half.
FIG. 8. Heat maps for (a) the pairwise distances between games unsorted on a ring; (b) the same distances after games have been reordered on the ring so as to minimize the cost function given in Eq. (3); (c) the same as panel (b) but with game indices cycled to make the continuous spectrum of games evident. We include only every 20th game for clarity and note that such shuffling is usually performed for entities on a line rather than a ring. The games at the end of the spectrum are most dissimilar and correspond to runaway victories and comebacks (see also Fig. 9).

FIG. 9. Heat matrix for the pairwise distances between games, subsampled by a factor of 20 as per Fig. 8. A noticeable split is visible between the blowout games (first six clusters) and the comeback victories (last three clusters). We plot dendrograms along both the top and left edges of the matrix, and as explained in Sec. V C, the boxed numbers reference the 18 motifs found when the average intracluster distance is set to 11 points. These 18 motifs are variously displayed in Figs. 12 and 13.

B. Coarse-grained motifs

While little modularity is apparent, there are no evident distinct classes of games, we may nevertheless perform a kind of coarse graining via hierarchical clustering to extract a dendrogram of increasingly resolved game motifs.

Even though we have just shown that the game story ecology forms a continuum, it is important that we stress that the motifs we find should not be interpreted as well-separated clusters. Adjacent motifs will have similar game stories at their connecting borders. A physical example might be the landscape roughness of equal area regions dividing up a country: two connected areas would typically be locally similar along their borders. Having identified a continuum, we are simply now addressing the variation within that continuum using a range of scales.

We employ a principled approach to identifying meaningful levels of coarse graining, leading to families of motifs. As points are the smallest scoring unit in AFL games, we use them to mark resolution scales as follows. First, we define ρ_i, the average distance between games within a given cluster i as

$$\rho_i = \frac{1}{n_i(n_i - 1)} \sum_{j=1}^{n_i} \sum_{k=1, k\neq j}^{n_i} D(g_j, g_k).$$

Here j and k are games placed in cluster i, n_i is the number of games in cluster i, and D is the game distance defined in Eq. (2). At a given depth d of the dendrogram, we compute $\rho_i(d)$ for each of the $N(d)$ clusters found, and then average over all clusters to obtain an average intracluster distance:

$$\langle \rho(d) \rangle = \frac{1}{N(d)} \sum_{i=1}^{N(d)} \rho(d).$$

We use Ward’s method of variance to construct a dendrogram [20], as shown in Fig. 9. Ward’s method aims to minimize the within cluster variance at each level of the hierarchy. At each step, the pairing which results in the minimum increase in the variance is chosen. These increases are measured as a weighted squared distance between cluster centers. We chose Ward’s method over other linkage techniques based on its tendency to produce clusters of comparable size at each level of the hierarchy.

At the most coarse resolution of two categories, we see in Fig. 9 that one-sided contests are distinguished from games that remain closer, and repeated analysis using k-means clustering suggests the same presence of two major clusters.

As we are interested in creating a taxonomy of more particular, interpretable game shapes, we opt to make cuts as $\langle \rho(d) \rangle$ first falls below an integer number of points, as shown in Fig. 10 [we acknowledge that $\langle \rho(d) \rangle$ does not perfectly
FIG. 10. Average intracluster distance \(\langle \rho \rangle \) as a function of cluster number \(N \). Vertical red lines mark the first occurrence in which the average of the intracluster distance of the \(N \) motif clusters had a value below 12, 11, 10, 9, and 8 (red text beside each line) points respectively. The next cut for seven points gives 343 motifs.

decrease monotonically]. As indicated by the red vertical lines, average intracluster point differences of 12, 11, 10, 9, and 8 correspond to 9, 18, 30, 71, and 157 distinct clusters. Our choice, which is tied to a natural game score, has a useful outcome of making the number of clusters approximately double with every single point in average score differential.

C. Taxonomy of 18 motifs for real AFL games

In the remainder of Sec. V, we show and explore in some depth the taxonomies provided by 18 and 71 motifs at the 11- and nine-point cutoff scales.

We first show that for both cutoffs, the number of motifs produced by the biased random walk null model is typically well below the number observed for the real game. In Fig. 11 we show histograms of the number of motifs found in the 100 ensembles of 1310 games using the random walk null model and evaluating at 11- and nine-point cutoffs (a, b) as described in Sec. V B. For real games, we obtain by comparison 18 and 71 motifs [vertical red lines in panels (a) and (b)], which exceeds all 100 motif numbers in both cases and indicates AFL game stories are more diverse than our null model would suggest.

In the bottom right corner of each motif panel, we record two counts: (1) the number of real games belonging to the motif’s cluster and (2) the average number of our ensemble of \(100 \times 1310 \) biased random walk games (see Sec. III) which are closest to the motif according to Eq. (2). For each motif, we compute the ratio of real to random adjacent game stories, \(R \), and, as a guide, we color the motifs as:

- Red if \(R \geq 1.1 \) (real game stories are more abundant)
- Gray if \(0.9 < R < 1.1 \) (counts of real and random game stories are close)
- Blue if \(R \leq 0.9 \) (random game stories are more abundant).

We immediately observe that the number of games falling within each cluster is highly variable, with only three in the most extreme blowout motif [no. 1, Figs. 12(a) and 13(a)] and 169 in a gradual-pulling-away motif [no. 8, Figs. 12(b) and 13(b)].

The average motif game stories in Fig. 12 provide us with the essence of each cluster, and, though they do not represent any one real game, they are helpful for the eye in distinguishing clusters. Naturally, by applying further coarse graining as we do below, we will uncover a richer array of more specialized motifs.

Looking at Figs. 12 and 13, we now clearly see a continuum of game shapes ranging from extreme blowouts (motif no. 1) to extreme comebacks, both successful (motif no. 17) and failed (motif no. 18). We observe that while some motifs have qualitatively similar story lines, a game motif that has a monotonically increasing score differential that ends with a margin of 200 (no. 1) is certainly different from one with a final margin of 50 (no. 6).

In considering this induced taxonomy of 18 game motifs, we may interpret the following groupings:

- No. 1–no. 6, no. 8: One-sided, runaway matches
FIG. 12. Eighteen game motifs as determined by performing hierarchical clustering analysis and finding when the average intracluster game distance \(\langle \rho \rangle \) first drops below 11 points. In each panel the main curves are the motifs, the average of all game stories (shown as light gray curves in background) within each cluster, and we arrange clusters in order of the motif winning margin. All motifs are shown with the same axis limits. Numbers of games within each cluster are indicated in the bottom right corner of each panel along with the average number of the nearest biased random walk games (normalized per 1310). Motif colors (online version) correspond to relative abundance of real versus random game ratio \(R \) as red: \(R \geq 1.1 \); gray: \(0.9 \leq R < 1.1 \); and blue: \(R \leq 0.9 \). See Fig. 13 for the same motifs reordered by real game to random ratio.

No. 9: Losing early on, coming back, and then pulling away
No. 7 and no. 10: Initially even contests with one side eventually breaking away
No. 11 and no. 12: One team taking an early lead and then holding on for the rest of the game

FIG. 13. Real game motifs for an 11 point cut off as per Fig. 12 but reordered according to decreasing ratio of adjacent real to biased random games, \(R \), and with closest biased random walk rather than real game stories plotted underneath in light gray. See the caption for Fig. 12 for more details.

No. 13, no. 14, and no. 16: Variations on tight contests
No. 15 and no. 17: Successful comebacks
No. 18: Failed comebacks.

We note that the game stories attached to each motif might not fit these descriptions; we are only categorizing motifs. As we move to finer grain taxonomies, the neighborhood around motifs will become increasingly congruent with its constituent games.

The extreme blowout motif for real games has relatively fewer adjacent random walk game stories [Fig. 13(a)], as do the two successful comeback motifs [Figs. 13(c) and 13(f)], and games with a lead developed by half time that then remains...
stable [Fig. 13(e)]. A total of five motifs show a relatively even balance between real and random (i.e., within 10%) including two of the six motifs with the tightest finishes [Figs. 13(h) and 13(i)]. Biased random walks most overproduce games in which an early loss is turned around strongly [Fig. 13(q)] or an early lead is maintained [Fig. 13(r)]. In terms of game numbers behind motifs, we find a reasonable balance with 603 (46.0%) having \(R \geq 1.1 \) (seven motifs), 430 (32.8%) with \(0.9 < R < 1.1 \) (five motifs), and 277 (21.1%) with \(R \leq 0.9 \) (six motifs).

Depending on the point of view of the fan and again at this level of 18 motifs, we could argue that certain real AFL games that feature more often that our null model would suggest are more or less "interesting." For example, we see some dominating wins are relatively more abundant in the real game (no. 1, no. 2, and no. 4). While such games are presumably gratifying for fans of the team handing out the "pasting," they are likely deflating for the supporters of the losing team. And a neutral observer may or may not enjoy the spectacle of a superior team displaying their prowess. Real games do exhibit relatively more of the two major comeback motifs (no. 15 and no. 17), certainly exciting in nature, --though less of the failed comebacks (no. 18).

D. Taxonomy of 71 motifs for real AFL games

Increasing our level of resolution corresponding to an average intracluster game distance of \(\langle \rho \rangle = 9 \), we now resolve the AFL game story ecology into 71 clusters. We present all 71 motifs in Figs. 14 and 15, ordering by final margin and real-to-random game story ratio \(R \) respectively (we will refer to motif number and Fig. 15 so readers may easily connect to the orderings in both figures). With a greater number of categories, we naturally see a more even distribution of game stories across motifs with a minimum of one [motif no. 1, Fig. 15(ac)] and a maximum of 48 [motif no. 43, Fig. 15(ah)].

As for the coarser 18 motif taxonomy, we again observe a mismatch between real and biased random walk games. For example, motif no. 14 [Fig. 15(af)] is an average of 25 real game stories compared with on average 15.13 adjacent biased random walks while motif no. 20 [Fig. 15(cs)] has \(R = 10/22.67 \). Using our 10% criterion, we see 25 motifs have \(R \geq 1.1 \) (representing 553 games or 42.2%), 23 have \(0.9 < R < 1.1 \) (420 games, 32.0%), and the remaining 23 have \(R \leq 0.9 \) (337 games, 25.7%). Generally, we again see blowouts are more likely in real games. However, we also find some kinds of comeback motifs are also more prevalent \((R \geq 1.1) \) though not strongly in absolute numbers; these include the failed comebacks in motifs no. 67 [Fig. 15(ad)] and no. 71 [Fig. 15(af)], and the major comeback in motif no. 64 [Fig. 15(ab)].

In Fig. 16 we give summary plots for the 18 and 71 motif taxonomies with motif final margin as a function of the real-to-random ratio \(R \). The larger final margins of the blowout games feature on the right of these plots \((R \geq 1.1) \), and, in moving to the left, we see a gradual tightening of games as shapes become more favorably produced by the random null model \((R \leq 0.9) \). The continuum of game stories is also reflected in the basic similarity of the two plots in Fig. 16, made as they are for two different levels of coarse graining.

Returning to Figs. 14 and 15, we highlight ten examples in both reinforcements and refinements of motifs seen at the 18 motif level. We frame them as follows (in order of decreasing \(R \) and referencing Fig. 15):

- Fig. 15(ab), no. 64 \((R = 11/5.71) \): The late, great comeback
- Fig. 15(aj), no. 71 \((R = 7/4.00) \): The massive comeback that just falls short
- Fig. 15(ax), no. 55 \((R = 26/23.16) \): Rope-a-dope (taking steady losses and then surging late)
- Fig. 15(bz), no. 68 \((R = 7/8.05) \): Hold-slide-hold-surge
- Fig. 15(cd), no. 56 \((R = 12/14.69) \): See-saw battle
- Fig. 15(ck), no. 62 \((R = 19/26.26) \): The tightly fought nail-biter (or heart stopper)
- Fig. 15(cp), no. 50 \((R = 15/28.25) \): Burn-and-hold (or the game-manager, or the always dangerous playing not-to-lose)
- Fig. 15(cq), no. 36 \((R = 9/17.19) \): Surge-slide-surge.

These motifs may also be grouped according to the number of "acts" in the game. Motif no. 53 [Fig. 15(ao)], for example, is a three-act story while motifs no. 56 [Fig. 15(ce)] and no. 68 [Fig. 15(bz)] exhibit four acts. We invite the reader to explore the rest of the motifs in Fig. 15.

VI. Predicting games using shapes of stories

Can we improve our ability to predict the outcome of a game in progress by knowing how games with similar stories played out in the past? Does the full history of a game help us gain any predictive power over much simpler game state descriptions such as the current time and score differential? In this last section, we explore prediction as informed by game stories, a natural application.

Suppose we are in the midst of viewing a new game. We know the game story \(g_{obs} \) from the start of the game until the current game time \(t < T_{obs} \), where \(T_{obs} \) is the eventual length of game (and is another variable which we could potentially predict). In part to help with presentation and analysis, we will use minute resolution (meaning \(t = 60n \) for \(n = 0, 1, 2, \ldots \)). Our goal is to use our database of completed games, for which of course we know the eventual outcomes, to predict the final margin of our new game, \(g_{obs}(T_{obs}) \).

We create a prediction model with two parameters: (1) \(N \): the desired number of analog games closest to our present game and (2) \(M \): the number of minutes going back from the current time for which we will measure the distance between games. For a predictor, we simply average the final margins of the \(N \) closest analog games to \(g_{obs} \) over the interval \([t-M,t] \). That is, at time \(t \), we predict the final margin of \(g_{obs} \), \(F \), using \(M \) minutes of memory and \(N \) analog games as

\[
F(g_{obs},t/60,M,N) = \frac{1}{N} \sum_{i \in S(t/60,M,N)} g_i(T_i),
\]
FIG. 14. Seventy-one distinct game motifs as determined by hierarchical clustering analysis with a threshold of nine points, the fourth cutoff shown in Fig. 10 and described in Sec. V. Motifs are ordered by their final margin, highest to lowest, and real game stories are shown in the background of each motif. Cutoffs for motif colors red, gray, and blue correspond to real-to-random ratios 1.1 and 0.9, and the top number indicates motif rank according to final margin (see online version). The same process applied to the biased random walk model for our 100 simulations typically yields only 45 to 50 motifs (see Fig. 11). We discuss the 10 highlighted motifs in the main text and note that we have allowed the vertical axis limits to vary.
FIG. 15. Motifs (red curves) from Fig. 14 rearranged in order of descending ratio of the number of real games to the number of adjacent biased random walk games, as described in Sec. VC, and adjacent real game stories are shown in gray for each motif.
FIG. 16. Final margin of motifs as a function of real-to-random ratio \(R \) for real AFL games at the 18 and 71 motif levels, panels (a) and (b), respectively, with linear fits. On the right of each plot, extreme blowout motifs ending in high margins have no or relatively few adjacent random walks (red, \(R \geq 1.1 \)). On the left, game stories are more well represented by random walks (blue, \(R \leq 0.9 \)). There is considerable variation, however, particularly in the 71 motif case, and we certainly see some close finishes with \(R \geq 1 \) [e.g., the massive comeback, motif no. 71, Fig. 15(ae)].

where \(\Omega(g_{\text{obs}}, t/60, M, N) \) is the set of indices for the \(N \) games closest to the current game over the time span \([t - 60M, t]\), and \(T_i \) is the final second of game \(i \).

For an example demonstration, in Fig. 17 we attempt to predict the outcome of an example game story given knowledge of its first 60 min (red curve) and by finding the average final margin of the \(N = 50 \) closest game stories over the interval 45–60 min (memory \(M = 15 \), shaded gray region). Most broadly, we see that our predictor here would correctly call the winning team. At a more detailed level, the average final margin of the analog games slightly underestimates the final margin of the game of interest, and the range of outcomes for the 50 analog games is broad with the final margin spanning from around \(-40 \) to 90 points.

Having defined our prediction method, we now systematically test its performance after 30, 60, and 90 min have elapsed in a game currently under way. In aiming to find the best combination of memory and analog number, \(M \) and \(N \), we use Eq. (6) to predict the eventual winner of all 1310 AFL games in our data set at these time points. First, as should be expected, the further a game has progressed, the better our prediction. More interestingly, in Fig. 18 we see that for all three time points, increasing \(N \) elevates the prediction accuracy, while increasing \(M \) has little and sometimes the opposite effect, especially for small \(N \). The current score differential serves as a stronger indicator of the final outcome than the whole game story shape unfolded so far. The recent change in scores, momentum, is also informative, but to a far lesser extent than the simple difference in scores at time \(t \).

Based on Fig. 18, we proceed with \(N = 50 \) analogs and two examples of low memory: \(M = 1 \) and \(M = 10 \). We compare with the naive model that, at any time \(t \), predicts the winner as being the current leader.

FIG. 18. Fraction of games correctly predicted using the average final score of \(N \) analog games, with adjacency evaluated over the last \(M \) min at the three game times of (a) 30, (b) 60, and (c) 90 min. Increasing the number of analogs provides the strongest benefit for prediction while increasing memory either degrades or does not improve performance. Because prediction improves as a game is played out, the color bars cover the same span of accuracy (0.06) but with range translated appropriately.
null model produces a distribution of final margins which suitably matches that of real games; (3) blowout and major comeback motifs are much more strongly represented in the real game whereas tighter games are generally (but not entirely) more favorably produced by a random model; and (4) AFL game motifs are overall more diverse than those of the random version.

Our analysis of an entire sport through its game story ecology could naturally be applied to other major sports such as American football, Association football (soccer), basketball, and baseball. A cross-sport comparison for any of the above analysis would likely be interesting and informative. And at a macroscale, we could also explore the shapes of win-loss progressions of franchises over years [22].

It is important to reinforce that a priori, we were unclear as to whether there would be distinct clusters of games or a single spectrum, and one might imagine rough theoretical justifications for both. Our finding of a spectrum conditions our expectations for other sports and also provides a stringent, nuanced test for more advanced explanatory mechanisms beyond biased random walks, although we are wary of the potential difficulty involved in establishing a more sophisticated and still defensible mechanism.

Finally, a potentially valuable future project would be an investigation of the aesthetic quality of both individual games and motifs as rated by fans and neutral individuals [23]. Possible sources of data would be (1) social media posts tagged as being relevant to a specific game and (2) information on game-related betting. Would true fans rather see a boring blowout with their team on top than witness a close game [3,24]? Is the final margin the main criterion for an interesting game? To what extent do large momentum swings engage an audience? Such a study could assist in the implementation of new rules and policies within professional sports.

ACKNOWLEDGMENTS

We thank Eric Clark, Thomas McAndrew, and James Bagrow for helpful discussions. P.S.D. was supported by National Science Foundation CAREER Grant No. 0846668, and C.M.D. and P.S.D. were supported by National Science Foundation BIGDATA Grant No. 1447634.