Math 266: Chaos, Fractals, & Dynamical Systems—Assignment 1
University of Vermont, Spring 2017

Due: By start of lecture, 8:30am, Thursday, January 26, 2017.
Some useful reminders:
Instructor: Chris Danforth
Office: 218 Farrell Hall, Trinity Campus
Twitter: @nonperiodicflow, #math266
E-mail: chris.danforth@uvm.edu
Office hours: Check Twitter
Course website: http://www.uvm.edu/~cdanfort/main/266.html

Instructions: Unless otherwise noted, use your brain and pencil to solve problems before checking with Matlab. Graduate students (required) and those planning to go to graduate school in a mathematical science (encouraged) should turn in their solutions in \LaTeX; you will need to learn this language eventually. Check the course website for sample m-files.
Grading: All questions are worth 3 points unless marked otherwise (3 = perfect or nearly so, 2 = close but something missing, 1 = not close but a reasonable attempt, 0 = way off). Excellent solutions will be returned with the graded HW.
Disclosure: Please show all your working clearly and list the names of other students with whom you collaborated.

1. Let \(p \) be a fixed point of a nonlinear map \(f \). Given an \(\epsilon > 0 \), find a geometric condition on \(f \) under which all points \(x \) in \(N_\epsilon(p) \) are in the basin of \(p \). Use cobweb plot analysis to explain your reasoning. **Hint:** By geometric condition, I mean some constraint on \(f \) and/or \(f' \) in the neighborhood of \(p \). One example condition that you can improve upon:

\[
\forall x \in (p - \epsilon, p), f(x) > x \& f(x) < p
\]

\[
\forall x \in (p, p + \epsilon), f(x) < x \& f(x) > p
\]

In more words and less notation: provided \(f(x) \) remains between the lines \(y = x \) and \(y = p \) in the epsilon neighborhood of \(p \), all points in the neighborhood are in the basin of \(p \). This question is deeper than you may think at first, and showing your condition works for a single example is not proving that it works for all example functions \(f \). Your condition needs to work for all \(f \).

2. The map \(f(x) = 2x^2 - 5x \) on \(\mathbb{R} \) has fixed points at \(x = 0 \) and \(x = 3 \).
 (a) Find a period two orbit for \(f \) by solving \(f^2(x) = x \) for \(x \).
 (b) What is the stability of the orbit?
 Hint: For this problem and the next, you will need to factor a degree 4 polynomial.
This can be done by hand without any horrific formulas if you think about what you already know about the roots.
3. Let $G(x) = 4x(1 - x)$.
 (a) Find the fixed points and period two points of G and demonstrate that they are sources using G' and/or $(G^2)'$.
 (b) Continue the periodic table for G begun in Table 1.3. In particular how many periodic orbits of (minimum) period k does G have, for each $k \leq 10$?
 Hint: The pattern is not simple. Your table should look something like this:

<table>
<thead>
<tr>
<th>Period k</th>
<th>Number of fixed points of G^k</th>
<th>Proper divisors of k</th>
<th>Number of fixed points due to periods $<k$</th>
<th>Number of fixed points due to period k only</th>
<th>Orbits of period k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>1, 2</td>
<td>4</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Let $l(x) = ax + b$, where a and b are constants. For which values of a and b does l have
 (a) an attracting fixed point?
 (b) a repelling fixed point?
 (c) a neutral point?

5. Let $x_1 < \ldots < x_8$ be the eight fixed points of $G^3(x)$ where $G(x) = 4x(1 - x)$. Clearly $x_1 = 0$.
 (a) For which i is $x_i = \frac{3}{4}$?
 (b) Group the remaining six points into two orbits of three points each.
 Hint: It may help to consult Figure 1.10(c). The most elegant solution uses the chain rule. You need not compute the actual values of the x_i.

2