Distilling Free-Form Natural Laws from Experimental Data
Michael Schmidt, et al.
Science 324, 81 (2009);
DOI: 10.1126/science.1165893

The following resources related to this article are available online at www.sciencemag.org (this information is current as of May 27, 2009):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/cgi/content/full/324/5923/81

Supporting Online Material can be found at:
http://www.sciencemag.org/cgi/content/full/324/5923/81/DC1

A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/cgi/content/full/324/5923/81#related-content

This article cites 19 articles, 6 of which can be accessed for free:
http://www.sciencemag.org/cgi/content/full/324/5923/81#otherarticles

This article appears in the following subject collections:
Computers, Mathematics
http://www.sciencemag.org/cgi/collection/comp_math

Information about obtaining reprints of this article or about obtaining permission to reproduce this article in whole or in part can be found at:
http://www.sciencemag.org/about/permissions.dtl
Distilling Free-Form Natural Laws from Experimental Data

Michael Schmidt and Hod Lipson

For centuries, scientists have attempted to identify and document analytical laws that underlie physical phenomena in nature. Despite the prevalence of computing power, the process of finding natural laws and their corresponding equations has resisted automation. A key challenge to finding analytic relations automatically is defining algorithmically what makes a correlation in observed data important and insightful. We propose a principle for the identification of nontriviality. We demonstrated this approach by automatically searching motion-tracking data captured from various physical systems, ranging from simple harmonic oscillators to chaotic double-pendula. Without any prior knowledge about physics, kinematics, or geometry, the algorithm discovered Hamiltonians, Lagrangians, and other laws of geometric and momentum conservation. The discovery rate accelerated as laws found for simpler systems were used to bootstrap explanations for more complex systems, gradually uncovering the “alphabet” used to describe those systems.

Mathematical symmetries and invariants underlie nearly all physical laws in nature (1), suggesting that the search for many natural laws is inseparably a search for conserved quantities and invariant equations (2, 3). Automated techniques for generating, collecting, and storing data from scientific measurements have become increasingly precise and powerful, but automated processes for distilling this data into knowledge in the form of analytical natural laws have not kept pace. Thus, there is a pressing practical need (4, 5) for improved forms of scientific data mining (6, 7).

The most prohibitive obstacle to overcome in order to search for conservation laws computationally is finding meaningful and nontrivial invariants. There exist an infinite number of identities that are numerically invariant but have no connection to the natural physics or dynamics of the system. We introduce a principle for identifying only the useful analytical relations that are related to the system dynamics. We then demonstrate how a search algorithm based on this principle identifies meaningful analytical links in data captured from various physical systems (Fig. 1).

Our goal is to find natural relations where they exist, with minimal restrictions on their analytical form (i.e., free-form). Many methods exist for modeling scientific data: Some use fixed-form parametric models derived from expert knowledge, and others use numerical models (such as neural networks) aimed at prediction. Still others have explored restricted model spaces using greedy monomial search (8, 9). Alternatively, we seek the principal unconstrained analytical expression that explains symbolically precise conserved relations, thus helping distill data into scientific knowledge.

Symbolic regression (10) is an established method based on evolutionary computation (11) for searching the space of mathematical expressions while minimizing various error metrics [see section S4 in the supporting online material (SOM)]. Unlike traditional linear and nonlinear regression methods that fit parameters to an equation of a given form, symbolic regression searches both the parameters and the form of equations simultaneously (see SOM section S6). Initial expressions are formed by randomly combining mathematical building blocks such as algebraic operators \{+, −, ×, ÷\}, analytical functions (for example, sine and cosine), constants, and state variables. New equations are formed by recombining previous equations and probabilistically varying their subexpressions. The algorithm retains equations that model the experimental data better than others and abandons unpromising solutions. After equations reach a desired level of accuracy, the algorithm terminates, returning a set of equations that are most likely to correspond to the intrinsic mechanisms underlying the observed system.

Although symbolic regression is typically used to find explicit (12–14) and differential equations (15), this method cannot readily find conservation laws or invariant equations. Rather than trying to model a specific signal, we are trying to detect any underlying physical law that the system obeys, which may or may not be constant (e.g., a Lagrangian).

A particular challenge is requiring the law to be a function of the system’s state while avoiding trivial or meaningless relations. For any system over the state space \(x\), there are infinitely many trivial equations over \(x\) that satisfy a conserved quantity, such as \(\sin^2(x_1) + \cos^2(x_1)\) or \(x_1 + 4.56 - x_3x_1x_2\). Additionally, there are infinitely many arbitrarily close trivial conservations, such as \(4.56 + 1/(100 + x_1^2)\). To distinguish good conservation law candidates from poor ones, we need a more robust principle than simply invariance alone.

The identification of nontrivial relations is a major challenge, even for human scientists: Many published invariant quantities have turned out to be coincidental (16). The mere appearance of a conserved value is insufficient for a conservation...
We collected data from standard experimental systems typically used in undergraduate physics education: an air-track oscillator and a double pendulum (Fig. 3). We used motion-tracking software to record the devices’ positions over time. We then numerically calculated velocities and accelerations (see SOM section S11). All data sets are available in SOM section S15.

Without any additional information, system models, or theoretical knowledge, the search with the partial-derivative–pairs criterion produced several analytical law expressions directly from these data. For each system, the algorithm outputs a short list of ~10 equations that have maximal accuracy found for different sizes (complexes) of equations (see SOM section S8). We then inspect this list manually to select the final equation. Often the list consists of varying approximations or elaborations on a particular law equation, but it can contain qualitatively different equations, as discussed below.

We experimented on two configurations of the air track: (i) two-spring single-mass and (ii) three-spring double-mass. Similarly, we collected timeseries data from a pendulum and a double pendulum (Fig. 3) with the use of motion-tracking (SOM section S12).

The single-car air track is a harmonic oscillator with slight damping from the air and its two springs. With only minimal noise and damp-
ing, it was the simplest physical system that we
examined. The double-mass air track consisted of
two coupled harmonic oscillators of different
masses. There was considerable noise in this data
set as a result of compression of the middle
spring. The pendulum is a nonlinear oscillator
that is masked by small-angle approximations.
The double pendulum is a coupled nonlinear
oscillator system that exhibits rich dynamics (17)
and chaos at certain energies (18), making it
challenging to model (19, 20). Additionally, there
is higher measurement noise and dampening
errors due to higher velocities.

Given position and velocity data over time,
the algorithm converged on the energy laws of
each system (Hamiltonian and Lagrangian equa-
tions). Given acceleration data also, it produced
the differential equation of motion corresponding
to Newton’s second law for the harmonic oscil-
lator and pendulum systems. Given only position
data for the pendulum, the algorithm converged
on the equation of a circle, indicating that the
pendulum is confined to a circle. The algorithm
also produced several inexact expressions
through small-angle approximations—for exam-
ple, using x in place of $\sin(x)$ and $1 - x^2$ in place
of $\cos(x)$ in the pendulum and double-pendulum
systems.

An interesting approximate law for the double
pendulum that emerged was conservation of an-
gular momentum. Given only data measured
while the pendulum was chaotic (at high energy),
the algorithm fixated on this law. The conserva-
tion of momentum equation is simpler than other
valid laws and is approximately correct for high
velocities where gravity is negligible, as with the
high-energy chaotic data set.

Similarly, given only data from low-velocity
in-phase oscillations, the algorithm fixated on
small-angle approximations and uncoupled en-
ergy terms. By combining the chaotic data with
low-velocity in-phase oscillation data, the algo-
rithm converged onto the precise energy laws
after several hours of computation.

In the absence of appropriate building blocks,
the algorithm developed approximations. For ex-
ample, eliminating the sine and cosine operations
from the set of equation building blocks caused
the pendulum invariant to be expressed as $\omega^2 +
 k_1 \theta^2 - k_2 \theta^4$ (where θ is the pendulum’s angle, ω
is the angular velocity, and k_1 and k_2 are constants),
thereby exploiting the 4th-order Taylor series ex-
pansion of the cosine function. Eliminating cosine
but not sine drove the algorithm to converge on
the equality $\cos(\theta) = \sin(\theta + \pi/2)$ or more com-
plex equivalences (see SOM section S13).

Useful scientific theory is both predictive and
parsimonious. Similarly, some equations may be
more accurate but overfit the data, whereas others
may be more parsimonious but oversimplify

Fig. 3. Summary of laws inferred from experimental data collected from
physical systems. Depending on the types of variables provided to the
algorithm, it detects different types of laws. Given solely position information,
the algorithm detects position manifolds; given velocities, the algorithm detects
energy laws; given accelerations, it detects equations of motion and sum of
forces laws (θ, angle; ω, angular velocity; α, angular acceleration).
(21, 22); the right balance is difficult to specify in advance. Instead of producing a single result, the algorithm produces a small set of final candidate analytical expressions on the accuracy parsimony Pareto front (see SOM section S8), which represents the optimal solutions as they vary over equation complexity and the maximum predictive ability. Parsimony is measured as the inverse of the number of terms in the expression, whereas the predictive accuracy is measured as error on withheld experimental data used only for validation.

The Pareto front for the double pendulum (Fig. 4A) reveals a few particularly simple equations that predict the partial-derivative pairs accurately. Predictive accuracy was measured by cross-validation with the partial-derivative pairs criterion (see SOM section S2). The Pareto front tends to contain a cliff where predictive ability jumps rapidly at some minimum complexity. Predictive ability then improves only marginally with more complex equations (Fig. 4A). The conservation of angular momentum law lies at the point representing the simplest equation with the largest increase in predictive ability. In all of our experiments, the solution at this point has been an exact theoretical law (see SOM section S7 for additional systems).

In the worst case, the time to converge on the law equations depends exponentially on the complexity of the law expression itself and roughly quadratically on the system dimensionality (the number of variable pairings) (Fig. 4B). The algorithm’s search is readily parallelizable, as many candidate functions need to be evaluated simultaneously. In a 32-core implementation, the time required ranged from a few minutes for the harmonic oscillator to 30 hours for the double pendulum. The impact of noise also couples with these factors (see SOM section S9). For comparison, the simulated double-mass air-track and simulated double-pendulum data sets (where measurements are noiseless) took ~1/10th of the computational effort to analyze. A summary of performance versus noise level is provided in SOM section S9.

Though the algorithm can present equations corresponding to physical laws in their mathematical form, we are still faced with the challenge of justifying and giving words to their meaning. One difficulty is that we cannot know with certainty the units of bulk constants in the law expressions (for example, combinations of masses, lengths, etc. embodied in the system). Second, the equation may model something that is inherently difficult to observe directly, such as total energy. Requiring equations to maintain consistent physical units still leaves room for ambiguity.

A more systematic approach to parsing the coefficients is to analyze multiple data sets from the same systems, albeit with different configurations and parameters. To demonstrate this approach, we used several virtual double pendula with randomly chosen masses and lengths to generate several synthetic data sets. We fit the free coefficients of the automatically discovered model to each data set and then invoked the equation search algorithm again to seek a relation between the coefficients and parameter sets. After arbitrarily defining $k_3 = 1$, the algorithm identified that $k_2 = m_2 L_2^2 (m_1 L_1^2 + m_1 L_2^2)$, $k_3 = 2m_2 L_2 (m_1 L_1 + m_2 L_2)$, $k_4 = 19.6 L_1$, and $k_5 = 19.6 m_2 L_2 (m_1 L_1^2 + m_1 L_2^2)$, where 19.6 is the only absolute constant (over all parameter variations) whose units are necessarily meters per square seconds (see SOM section S5). In the above expressions, m is mass and L is length. A similar approach can be used to identify coefficients that vary slowly over time (for example, because of damping, creeping, or ecological drift).

Computational systems such as this could play a role in modeling high-dimensional and complex phenomena (23, 24) that currently stress the reach of expert-driven research. A key challenge is scaling to higher complexity. To accomplish this, scientists leverage knowledge from simpler systems to explain more complex systems. Can an algorithm do this as well?

One method to use prior knowledge is seed- ing the equation search by initializing the algorithm’s initial set of candidate expressions with terms from equations from simpler systems. For example, the single-pendulum and the double-harmonic oscillator equations provide clues to the laws governing the more complex double pendulum. We shuffled terms of the simpler systems (for example, exchanging velocity symbols with double-pendulum velocity variables) and randomized parameters to generate many inexact initial expressions. This seeding approach does not constrain the equation search, but it biases the search to reuse terms from previous laws.

Bootstrapping the double-pendulum search in this fashion reduced the search time by nearly an order of magnitude, from 30 to 40 hours of computation to 7 to 8 hours (Fig. 4B). On the basis of this result, we conjecture that bootstrapping may be critical for detecting laws in higher-order systems that are veiled in complexity.

A statistical analysis of the subexpression frequency and complexity across populations of various physical systems revealed that the terms that are both frequently used and complex tend to be more physically meaningful, such as trigonometric terms representing potential energies, squared velocities representing kinetic energies, or linear force combinations (see SOM section S10). These terms may make up an “emergent alphabet” for describing a range of systems, which could accelerate their modeling and simplify their conceptual understanding.

![Fig. 4. Parsimony versus accuracy and computation time. (A) Pareto front (solid black curve) for physical laws of the double pendulum and the frequency of sampling during the law equation search (gray scale). The equation at the cliff corresponds to the exact energy conservation law of the double pendulum (highlighted in the figure). A second momentum conservation law that we encountered is also highlighted. (B) Computational time required to detect different physical laws for several systems. The computation time increases with the dimensionality, law equation complexity, and noise. A notable exception is the bootstrapped double pendulum, where reuse of terms from simpler systems helped reduce computational cost by almost an order of magnitude, suggesting a mechanism for scaling higher complexities.](image-url)
The Automation of Science

Ross D. King,1* Jem Rowland,1 Stephen G. Oliver,2 Michael Young,3 Wayne Aubrey,1 Emma Byrne,1 Maria Liakata,1 Magdalena Markham,1 Pinar Pir,2 Larisa N. Soldatova,1 Andrew Sparkes,1 Kenneth E. Whelan,1 Amanda Clare2

The basis of science is the hypothetic-deductive method and the recording of experiments in sufficient detail to enable reproducibility. We report the development of Robot Scientist “Adam,” which advances the automation of both. Adam has autonomously generated functional genomics hypotheses about the yeast *Saccharomyces cerevisiae* and experimentally tested these hypotheses by using laboratory automation. We have confirmed Adam’s conclusions through manual experiments. To describe Adam’s research, we have developed an ontology and logical language. The resulting formalization involves over 10,000 different research units in a nested treelike structure, 10 levels deep, that relates the 6.6 million biomass measurements to their logical description. This formalization describes how a machine contributed to scientific knowledge.

Computers are playing an ever-greater role in the scientific process (1). Their use to control the execution of experiments contributes to a vast expansion in the production of scientific data (2). This growth in scientific data, in turn, requires the increased use of computers for analysis and modeling. The use of computers is also changing the way that science is described and reported. Scientific knowledge is best expressed in formal logical languages (3). Only formal languages provide sufficient semantic clarity to ensure reproducibility and the free exchange of scientific knowledge. Despite the advantages of logic, most scientific knowledge is expressed only in natural languages. This is now changing through developments such as the Semantic Web (4) and ontologies (5).

A natural extension of the trend to ever-greater computer involvement in science is the concept of a robot scientist (6). This is a physically implemented laboratory automation system that exploits techniques from the field of artificial intelligence (7–9) to execute cycles of scientific experimentation. A robot scientist automatically originates hypotheses to explain observations, devises experiments to test these hypotheses, physically runs the experiments by using laboratory robotics, interprets the results, and then repeats the cycle.

High-throughput laboratory automation is transforming biology and revealing vast amounts of new scientific knowledge (10). Nevertheless, existing high-throughput methods are currently inadequate for areas such as systems biology. This is because, even though very large numbers of experiments can be executed, each individual experiment cannot be designed to test a hypothesis about a model. Robot scientists have the potential to overcome this fundamental limitation.

The complexity of biological systems necessitates the recording of experimental metadata in as much detail as possible. Acquiring these metadata has often proved problematic. With robot scientists, comprehensive metadata are produced as a natural by-product of the way they work. Because the experiments are conceived and executed automatically by computer, it is possible to completely capture and digitally curate all aspects of the scientific process (11, 12).

To demonstrate that the robot scientist methodology can be both automated and be made effective enough to contribute to scientific knowledge, we have developed Robot Scientist “Adam” (13) (Fig. 1). Adam’s hardware is fully automated such that it only requires a technician to periodically add laboratory consumables and to remove waste. It is designed to automate the high-throughput execution of individually designed microbial batch growth experiments in microtiter plates (14). Adam measures growth curves (phenotypes) of selected microbial strains (genotypes) growing in defined media (environments). Growth of cell cultures can be easily measured in well plates.

We applied Adam to the identification of genes encoding orphan enzymes in *Saccharomyces cerevisiae*: enzymes catalyzing biochemical reactions thought to occur in yeasts, but for which the encoding gene(s) are not known (15). To set up Adam for this application required (i) a comprehensive logical model encoding knowledge of *S. cerevisiae* metabolism ∼1200 open

References and Notes

1Department of Computer Science, Aberystwyth University, SY23 3DB, UK.
2Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
3Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3DD, UK.

*To whom correspondence should be addressed. E-mail: rdk@aber.ac.uk

23This research was supported in part by Integrative Graduate Education and Research Traineeship program in nonlinear systems, a U.S. NSF graduate research fellowship, and NSF Creative-IT grant 0575478 and CAREER grant 0547376.
24We thank M. Kurnan for editorial consultation and substantive editing of the manuscript.

Supporting Online Material

www.sciencemag.org/cgi/content/full/324/5923/81/DC1

Materials and Methods

SDA Text

Figs. S1 to S7

Tables S1 to S3

References

Movie S1

Data Sets S1 to S15

15 September 2008; accepted 19 February 2009

10.1126/science.1165893