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roughly 300 animals, and given a choice between an optimal concentration of benzalde-
hyde (1:200 dilution in ethanol) and a lower concentration of diacetyl (1:10,000 dilution in
ethanol) in the presence of a uniform ®eld of butanone (1.2 ml per 10-ml plate). Under
these conditions more than 95% of wild-type animals prefer benzaldehyde. Animals that
accumulated at the diacetyl source were removed and retested under the same conditions
to repeat the enrichment. Animals that preferred diacetyl three times were isolated, and
their F3 broods were given a choice between benzaldehyde and diacetyl in the absence of a
uniform concentration of butanone. Mutants that could chemotax to benzaldehyde under
these conditions were saved. Twenty-seven mutants exhibited discrimination defects that
could also be replicated without the diacetyl counterattractant. Mutants were backcrossed
twice to wild-type animals.

Genetic mapping of ky542

We mapped ky542 to chromosome II by observing segregation of the discrimination
phenotype away from the dominant marker sqt-1(sc1) (7/7 isolates). Subsequent mapping
was performed by following segregation of the discrimination phenotype with single-
nucleotide polymorphisms (SNPs) between the wild-type N2 and CB4856 strains. F2

progeny of ky542 ´ CB4856 crosses were isolated, and populations were generated from
each isolate. Each population was tested for butanone/benzaldehyde discrimination.
Populations that were homozygous mutant and those that were homozygous wild type
were retained, whereas populations that appeared to be heterozygous were discarded. We
isolated DNA from each population, and scored SNPs by polymerase chain reaction
ampli®cation followed by restriction-enzyme digestion. Using 33 populations, we found
that ky542 mapped between SNPs located on cosmid C01F1 (chromosome II, position
-4.5) and cosmid C34F1 (chromosome II, position -2.5).

Laser ablations

AWC neurons were ablated in a wild-type strain that contained an integrated str-2::GFP
reporter (kyIs140) at the L1 or L2 larval stage17. The AWC neuron was identi®ed by its
characteristic position or by the use of the str-2::GFP marker, and then laser irradiated.
Ablation was con®rmed for AWCON-ablated animals by looking for str-2::GFP expres-
sion after all assays had been performed. Single-animal assays were performed on gravid
adults as early as the second day after ablation and as late as the fourth day. We assayed
the same animals on two or three consecutive days. As many as three consecutive
olfactory assays were performed in a single day. For discrimination assays, in which
animals were challenged with the same attractant in the presence and absence of
saturating odour, animals were allowed to recover between tests for 1 h on a fresh plate
with no odours. The order of the assays was randomized on different days. Single-animal
assay plates were poured 1 day before the assays and allowed to air dry for 1 h before the
assays.
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Myocardial infarction leads to loss of tissue and impairment of
cardiac performance. The remaining myocytes are unable to
reconstitute the necrotic tissue, and the post-infarcted heart
deteriorates with time1. Injury to a target organ is sensed by
distant stem cells, which migrate to the site of damage and
undergo alternate stem cell differentiation2±5; these events pro-
mote structural and functional repair6±8. This high degree of stem
cell plasticity prompted us to test whether dead myocardium
could be restored by transplanting bone marrow cells in infarcted
mice. We sorted lineage-negative (Lin-) bone marrow cells from
transgenic mice expressing enhanced green ¯uorescent protein9

by ¯uorescence-activated cell sorting on the basis of c-kit
expression10. Shortly after coronary ligation, Lin- c-kitPOS cells
were injected in the contracting wall bordering the infarct. Here
we report that newly formed myocardium occupied 68% of the
infarcted portion of the ventricle 9 days after transplanting the
bone marrow cells. The developing tissue comprised proliferating
myocytes and vascular structures. Our studies indicate that locally
delivered bone marrow cells can generate de novo myocardium,
ameliorating the outcome of coronary artery disease.

Injection of male Lin-c-kitPOS bone marrow cells (see Supple-
mentary Information) in the peri-infarcted left ventricle of female
mice resulted in myocardial regeneration. Repair was obtained in 12
out of 30 mice (40%). Failure to reconstitute infarcts was attributed
to the dif®culty of transplanting cells into tissue contracting at 600
beats per minute. However, an immunological reaction to the
histocompatibility antigen on the Y chromosome of the donor
bone marrow cells could account for the lack of repair in some of the
female recipients. Closely packed myocytes occupied 68 6 11% of
the infarcted region and extended from the anterior to the posterior
aspect of the ventricle (Fig. 1a±d). The fraction of endocardial and
epicardial circumference delimiting the infarcted area1,11 did not
differ in untreated mice, 78 6 18% (n � 8), or in mice treated
with Lin-c-kitPOS cells, 75 6 14% (n � 12), or Lin-c-kitNEGcells,
75 6 15% (n � 11). New myocytes were not found in mice injected
with Lin-c-kitNEGcells (Fig. 1e).

The origin of the cells in the forming myocardium was deter-
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mined by the expression of enhanced green ¯uorescent protein
(EGFP) (Fig. 2; see also Supplementary Information) and the
presence of Y chromosome (Supplementary Information). EGFP
was restricted to the cytoplasm, whereas Y chromosome was
restricted to the nuclei of new cardiac cells. EGFP and Y chromo-
some were not detected in the surviving portion of the ventricle.
EGFP expression was combined with the labelling of proteins
speci®c for myocytes, endothelial cells and smooth muscle cells.
This allowed us to identify each cardiac cell type, and to recognize
endothelial and smooth muscle cells organized in coronary vessels
(Fig. 3a±c; see also Supplementary Information). The percentage of
new myocytes, endothelial cells and smooth muscle cells expressing
EGFP was 53 6 9% (n � 7), 44 6 6% (n � 7) and 49 6 7% (n � 7),
respectively. These values were consistent with the fraction of
transplanted Lin-c-kitPOS bone marrow cells that expressed EGFP,
44 6 10% (n � 6). An average 54 6 8% (n � 6) of myocytes,
endothelial cells and smooth muscle cells expressed EGFP in the
heart of donor transgenic mice.

To con®rm that newly formed myocytes represented maturing

cells aiming at functional competence, we examined expression of
the myocyte enhancer factor 2 (MEF2), the cardiac speci®c tran-
scription factor GATA-4 and the early marker of myocyte develop-
ment Csx/Nkx2.5. In the heart, MEF2 proteins are recruited by
GATA-4 to activate synergistically the promoters of several cardiac
genes, such as myosin light chain, troponin T, troponin I, a-myosin
heavy chain, desmin, atrial natriuretic factor and a-actin12,13. Csx/
Nkx2.5 is a transcription factor restricted to the initial phases of

Figure 1 Bone marrow cells and myocardial regeneration. a, Myocardial infarct (MI)

injected with Lin- c-kitPOS cells from bone marrow (arrows). Arrowheads indicate

regenerating myocardium; VM, viable myocardium. b, Same MI at higher magni®cation.

c, d, Low and high magni®cations of MI injected with Lin-c-kitPOS cells. e, MI injected with

Lin- c-kitNEG cells; only healing is apparent. Asterisk indicates necrotic myocytes. Red,

cardiac myosin; green, propidium iodide labelling of nuclei. Original magni®cation, ´12

(a); ´25 (c) ´50 (b, d, e).

Figure 2 Myocardial infarct injected with Lin-c-kitPOS cells; myocardium is regenerating

from endocardium (EN) to epicardium (EP). a, EGFP (green); b, cardiac myosin (red);

c, combination of EGFP and myosin (red±green), and propidium-iodide-stained nuclei

(blue). Infarcted tissue (IT) can be seen in the subendocardium, spared myocytes (SM) can

be seen in the subepicardium. Original magni®cation, ´250 (a±c).

Figure 3 Regenerating myocardium in myocardial infarct injected with Lin- c-kitPOS cells.

a, EGFP (green); b, smooth muscle a-actin in arterioles (red); c, combination of EGFP

and smooth muscle a-actin (yellow±red), and propidium iodide (PI)-stained nuclei (blue).

d±i, MEF2 and Csx/Nkx2.5 in cardiac myosin-positive cells. d, g, PI-stained nuclei (blue);

e, h, MEF2 and Csx/Nkx2.5 labelling (green); f, i, cardiac myosin (red), and combination of

MEF2 or Csx/Nkx2.5 with PI (bright ¯uorescence in nuclei). Original magni®cation, ´300

(a±i).
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myocyte differentiation12. In the reconstituting heart, all nuclei of
cells labelled with cardiac myosin expressed MEF2 (Fig. 3d±f) and
GATA-4 (Supplementary Information), but only 40 6 9% expressed
Csx/Nkx2.5 (Fig. 3g±i).

To characterize further the properties of these myocytes, we
determined the expression of connexin 43. This protein is
responsible for intercellular connections and electrical coupling
through the generation of plasma-membrane channels between
myocytes14,15; connexin 43 was apparent in the cell cytoplasm and
at the surface of closely aligned differentiating cells (Fig. 4). These
results were consistent with the expected functional competence of
the heart muscle phenotype. In addition, myocytes at various stages
of maturation were detected within the same and different bands
(Fig. 5).

Ki67 is expressed in cycling cells in G1, S, G2 and early mitosis16,
providing a quantitative estimate of the fraction of cells in the cell
cycle at the time of observation. 5-Bromodeoxyuridine (BrdU)
labelling identi®es nuclei in S phase16,17; therefore, we injected
BrdU for 4±5 days to assess cumulative cell division during active
growth (Supplementary Information). Proliferation of myocytes
was 93% (P , 0.001) and 60% (P , 0.001) higher than that of
endothelial cells, and 225% (P , 0.001) and 176% (P , 0.001)
higher than that of smooth muscle cells, when measured by BrdU
and Ki67, respectively (BrdU: myocytes 36 6 8%; endothelial cells
19 6 5%; smooth muscle cells 11 6 2%; Ki67: myocytes 19 6 3%;
endothelial cells 12 6 3%; smooth muscle cells 7 6 2%; n � 8 in all
cases). Dividing myocytes were small with partially aligned myo®-
brils, resembling late fetal/neonatal cells; 40±50% of the Ki67- or
BrdU-positive cells expressed EGFP.

Cell differentiation caused a loss of c-kit surface receptors. We
observed only two undifferentiated cells showing c-kit on the cell

membrane in the subendocardium of the infarcted wall. These c-kit-
labelled cells were in proximity but not within the regenerating
band. They expressed EGFP, con®rming their origin from the
transplant (Supplementary Information).

To determine whether developing myocytes derived from the
Lin-c-kitPOS cells had an impact on function, we obtained haemo-
dynamic parameters before death. Results from infarcted mice non-
injected or injected with Lin-c-kitNEGcells were combined. In
comparison with sham-operated mice, the infarcted groups exhib-
ited indices of cardiac failure (Fig. 6a). In mice treated with Lin-

c-kitPOScells, left ventricular (LV) end-diastolic pressure (LVEDP)
was 36% lower, and developed pressure (LVDP), LV + dP/dt and
LV - dP/dt were 32%, 40% and 41% higher, respectively.

Locally transplanted Lin-c-kitPOS bone marrow cells have a high
capacity for cardiac tissue differentiation. Here, they led to the
formation of new myocytes, endothelial cells and smooth muscle
cells generating de novo myocardium, inclusive of coronary arteries,
arterioles and capillaries. The partial repair of the infarcted heart
implies that the transplanted cells responded to signals from the
injured myocardium that promoted their migration, proliferation
and differentiation within the necrotic area of the ventricular wall
(Fig. 6b). These differentiating myocytes expressed nuclear and
cytoplasmic proteins typical of cardiac tissue. The presence of
connexin 43 points to cellular coupling and functional competence
of the restored myocardium (Fig. 6b). With postnatal maturation,
stem cell function was assumed previously to be restricted to cell
lineages present in the organ from which they are derived. However,
this limitation in stem cell differentiation potential has been
challenged by studies showing that bone marrow and neural stem
cells can produce many cell types4,5,18±20. We report, for the ®rst time,
that a subpopulation of primitive bone marrow cells regenerate
myocardium in vivo, replacing dead tissue.

Haematopoietic stem cells (HSCs), neural-crest-derived melano-
blasts and primordial germ cells express c-kit on their cell mem-
brane. These primitive cells migrate during fetal development,

Figure 4 Myocardial repair and connexin 43. a, Border zone; b±d, regenerating

myocardium. Shown are connexin 43 (yellow±green; arrows indicate contacts between

myocytes) and a-sarcomeric actin (red), and PI-stained nuclei (blue). Original

magni®cation, ´500 (a), ´800 (b±d).

Figure 5 Myocardial infarcts injected with Lin-c-kitPOS cells: regenerating myocytes.

Shown are cardiac myosin (red), and propidium-iodide-labelled nuclei (yellow±green).

Original magni®cation, ´1,000 (a); ´700 (b).
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homing to the yolk sac and liver. Both of these organs are positive
for messenger RNA encoding stem cell factor (SCF), the ligand for
c-kit21. It is thought that membrane-bound SCF mediates the
migration of HSC and other primitive cells to their target
organs22. The fetal and neonatal hearts are positive for SCF
transcripts21 and, although it is not clear whether adult heart cells
generate SCF, the c-kit/SCF pathway might be the mechanism by
which, in our conditions, transplanted Lin-c-kitPOS cells migrated
from the site of injection to the infarcted myocardium.

When a stem cell divides, two daughter cells are formed; these
may maintain stem cell properties or become differentiating cells23

that multiply much more rapidly than stem cells24. The Lin-c-kitPOS

cells in these transplants produced the three main cell types of the
heart: myocytes constituted the predominant and most active
growth component of the regenerating myocardium; endothelial
and smooth muscle cells were fast growing but were smaller
fractions of the developing tissue. Our observations are dif®cult

to compare with those obtained in the cryo-injured rat heart after
injecting cultured myocytes derived from mesenchymal bone
marrow cells25. Formation of myotubules in vitro was required for
successful transplantation in that study25, which contrasts with our
results. Cryo-injury has no human counterpart. It constitutes an
unusual damage with an intact coronary circulation. This may be
why only a few endothelial cells were possibly linked to the original
culture system25 and smooth muscle cells were not detected. Also at
variance with our data is the fact that there was no replacement of
damaged myocardium with functioning tissue.

Coronary heart disease accounts for 50% of all cardiovascular
deaths and nearly 40% of the incidence of heart failure. The current
®ndings have provided compelling evidence that our approach has
relevant implications for human disease. Locally delivered primitive
bone marrow cells promoted successful treatment of large
myocardial infarcts after the completion of ischaemic cell death.
This therapeutic intervention reduced the infarcted area and
improved cardiac haemodynamics. Infarct size is a major determi-
nant of morbidity and mortality, as massive infarcts affecting 40%
or more of the left ventricle in patients are associated with
intractable cardiogenic shock or the rapid development of
congestive heart failure1. In the past, recovery of cardiac function
has been fully dependent on the growth of the remaining non-
infarcted portion of the ventricle. However, the hypertrophied
infarcted heart undergoes progressive deterioration, leading to a
dilated myopathy, terminal failure and death1. Transplanted
Lin-c-kitPOS bone marrow cells have the capability of regenerating
acutely signi®cant amounts of contracting myocardium. This new
form of repair can improve the immediate and long-term outcome
of ischaemic cardiomyopathy. M

Methods
Lin-c-kit POS cells

We collected bone marrow from the femurs and tibias of male transgenic mice expressing
EGFP9. Cells were suspended in PBS containing 5% fetal calf serum (FCS) and incubated
on ice with rat anti-mouse monoclonal antibodies speci®c for the following haemato-
poietic lineages: CD4 and CD8 (T lymphocytes), B-220 (B lymphocytes), Mac-1
(macrophages), GR-1 (granulocytes) (all Caltag Laboratories) and TER-119
(erythrocytes) (Pharmingen). Cells were then rinsed in PBS and incubated for 30 min with
magnetic beads coated with goat anti-rat immunoglobulin (Polysciences). Lineage-
positive cells were removed by a biomagnet and the 10% remaining lineage-negative (Lin-)
cells were stained with ACK-4-biotin (anti-c-kit monoclonal antibody). Cells were rinsed
in PBS, stained with streptavidin-conjugated phycoerythrin (SA-PE) (Caltag) and sorted
by FACS using a FACSVantage instrument (Becton Dickinson). We excited EGFP and
ACK-4-biotin-SA-PE at a wavelength of 488 nm. The Lin- cells were sorted as c-kit-
positive (c-kitPOS) and c-kit-negative (c-kitNEG) with a 1±2 log difference in staining
intensity. The c-kitPOS cells were suspended at a concentration of 3 ´ 104 to 2 ´ 105 cells in
5 ml of PBS, and the c-kitNEG cells were suspended at a concentration of 5 ´ 104 to 5 ´ 105in
5 ml of PBS10.

Myocardial infarction

Myocardial infarction was induced in female C57BL/6 mice at 2 months of age as
described11; 3±5 h after infarction, the thorax was re-opened and 2.5 ml PBS containing
Lin-c-kitPOS cells were injected in the anterior and posterior aspects of the viable
myocardium bordering the infarct. Infarcted mice that were not injected or injected
with Lin-c-kitNEG cells and sham-operated mice were used as controls. All animals were
killed 9 6 2 days after surgery. Protocols were approved by an institutional review
board.

Ventricular function

Mice were anaesthetized with chloral hydrate (400 mg per kg (body weight), intraper-
itoneally (i.p.)), and the right carotid artery was cannulated with a microtip pressure
transducer (model SPR-671; Millar) for the measurements of LV pressures, and LV + and
LV- dP/dt in the closed-chest preparation. The abdominal aorta was cannulated, the heart
was arrested in diastole, and the myocardium was perfused retrogradely with 10% buffered
formalin11,26. Three tissue sections, from the base to the apex of the left ventricle, were
stained with haematoxylin and eosin. At 9 6 2 days after coronary occlusion, the infarcted
portion of the ventricle was easily identi®able grossly and histologically (see Fig. 1a). The
lengths of the endocardial and epicardial surfaces delimiting the infarcted region, and the
endocardium and epicardium of the entire left ventricle, were measured in each section.
Subsequently, their quotients were computed to yield the average infarct size in each case.
This was accomplished at ´4 magni®cation with an image analyser connected to a
microscope11.
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Cell proliferation and EGFP detection

To establish whether Lin-c-kitPOS cells resulted in myocardial regeneration, we adminis-
tered BrdU (50 mg per kg (body weight), i.p.) to the animals daily for 4±5 consecutive days
before death. Sections were incubated with anti-BrdU antibody, and BrdU labelling of
cardiac cells was measured17. Moreover, expression of Ki67 in nuclei was evaluated by
treating samples with a rabbit polyclonal anti-mouse Ki67 antibody (Dako). Fluorescein
isothiocyanate (FITC)-conjugated goat anti-rabbit IgG was used as secondary antibody.
EGFP was detected with a rabbit polyclonal anti-GFP (Molecular Probes). Myocytes were
recognized with a mouse monoclonal anti-cardiac myosin heavy chain (MAB 1552;
Chemicon) or a mouse monoclonal anti sarcomeric a-actin (clone 5C5; Sigma),
endothelial cells with a rabbit polyclonal anti-human factor VIII (Sigma) and smooth
muscle cells with a mouse monoclonal anti-smooth-muscle a-actin (clone 1A4; Sigma).
Nuclei were stained with propidium iodide, 10 mg ml-1 (refs 27, 28). We determined the
percentages of myocyte (M), endothelial cell (EC) and smooth muscle cell (SMC) nuclei
labelled by BrdU and Ki67 by confocal microscopy. This was accomplished by dividing the
number of nuclei labelled by the total number of nuclei examined. Numbers of nuclei
sampled in each cell population were as follows. BrdU labelling: M, 2,908; EC, 2,153;
SMC, 4,877. Ki67 labelling: M, 3,771; EC, 4,051; SMC, 4,752. Numbers of cells counted
for EGFP labelling: M, 3,278; EC, 2,056; SMC, 1,274. We determined the percentage of
myocytes in the regenerating myocardium by delineating the area occupied by cardiac-
myosin-stained cells and dividing this by the total area represented by the infarcted
region in each case.

Y chromosome

For the ¯uorescence in situ hybridization assay, we exposed sections to a denaturing
solution containing 70% formamide. After dehydration with ethanol, sections were
hybridized with the DNA probe CEP Y (satellite III) Spectrum Green (Vysis) for 3 h
(ref. 29). Nuclei were stained with propidium iodide.

Transcription factors and connexin 43

Sections were incubated with rabbit polyclonal anti-MEF2 (C-21; Santa Cruz), rabbit
polyclonal anti-GATA-4 (H-112; Santa Cruz), rabbit polyclonal anti-Csx/Nkx2.5
(obtained from Dr S. Izumo) and rabbit polyclonal anti-connexin 43 (Sigma). We used
FITC-conjugated goat anti-rabbit IgG (Sigma) as the secondary antibody30.

Statistical analysis

Results are presented as means 6 s.d. Signi®cance between two measurements was
determined by Student's t-test, and in multiple comparisons was evaluated by the
Bonferroni method. Values of P , 0.05 were considered signi®cant.
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The calcium-release-activated Ca2+channel, ICRAC
1±3, is a highly

Ca2+-selective ion channel that is activated on depletion of either
intracellular Ca2+ levels or intracellular Ca2+ stores. The unique
gating of ICRAC has made it a favourite target of investigation for
new signal transduction mechanisms; however, without molecu-
lar identi®cation of the channel protein, such studies have been
inconclusive. Here we show that the protein CaT1 (ref. 4), which
has six membrane-spanning domains, exhibits the unique bio-
physical properties of ICRAC when expressed in mammalian cells.
Like ICRAC, expressed CaT1 protein is Ca2+ selective, activated by a
reduction in intracellular Ca2+ concentration, and inactivated by
higher intracellular concentrations of Ca2+. The channel is indis-
tinguishable from ICRAC in the following features: sequence of
selectivity to divalent cations; an anomalous mole fraction effect;
whole-cell current kinetics; block by lanthanum; loss of selectivity
in the absence of divalent cations; and single-channel conduc-
tance to Na+ in divalent-ion-free conditions. CaT1 is activated by
both passive and active depletion of calcium stores. We propose
that CaT1 comprises all or part of the ICRAC pore.
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