
A

D
G
a

b

c

d

e

a

A
R
R
1
A

K
M
M
C
B
B
H
E

1

o
h
m
i
e
c
t
l
t
M
i

1
h

Ecological Indicators 29 (2013) 411–419

Contents lists available at SciVerse ScienceDirect

Ecological  Indicators

jo ur nal homep age: www.elsev ier .com/ locate /eco l ind

 causal  examination  of  the  effects  of  confounding  factors  on  multimetric  indices

onald  R.  Schoolmaster  Jr. a,∗, James  B.  Graceb, E.  William  Schweigerc, Brian  R.  Mitchelld,
lenn  R.  Guntenspergene

Five Rivers Services, LLC at U.S. Geological Survey, National Wetlands Research Center, United States
U.S. Geological Survey, National Wetland Research Center 700 Cajundome Blvd., Lafayette, LA 70506, United States
National Park Service, Rocky Mountain Network, 1201 Oakridge Drive, Fort Collins, CO 80525, United States
National Park Service, Northeast Temperate Network 54 Elm Street, Woodstock, VT 05091, United States
U.S. Geological Survey, Patuxent National Wildlife Research Center 12100 Beech Forest Road, Laurel, MD 20707, United States

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 17 November 2011
eceived in revised form
1 December 2012
ccepted 18 January 2013

eywords:
ultimetric index
etric adjustment

ausal networks
iological integrity
ioassessment
uman disturbance
nvironmental covariates

a  b  s  t  r  a  c  t

The  development  of  multimetric  indices  (MMIs)  as a means  of  providing  integrative  measures  of ecosys-
tem condition  is  becoming  widespread.  An increasingly  recognized  problem  for  the  interpretability  of
MMIs is controlling  for the  potentially  confounding  influences  of  environmental  covariates.  Most  com-
mon  approaches  to handling  covariates  are  based  on simple  notions  of statistical  control,  leaving  the
causal  implications  of  covariates  and  their  adjustment  unstated.  In this  paper,  we  use graphical  models
to  examine  some  of  the  potential  impacts  of environmental  covariates  on the  observed  signals  between
human  disturbance  and  potential  response  metrics.  Using  simulations  based  on  various  causal  networks,
we  show  how  environmental  covariates  can  both  obscure  and  exaggerate  the  effects  of human  dis-
turbance  on  individual  metrics.  We  then  examine  from  a causal  interpretation  standpoint  the  common
practice  of adjusting  ecological  metrics  for environmental  influences  using  only the  set  of  sites  deemed
to be  in  reference  condition.  We  present  and  examine  the  performance  of  an  alternative  approach  to
metric  adjustment  that  uses  the  whole  set  of  sites  and  models  both  environmental  and  human  dis-

turbance  effects  simultaneously.  The  findings  from  our  analyses  indicate  that  failing  to  model  and  adjust
metrics  can  result  in  a  systematic  bias  towards  those  metrics  in  which  environmental  covariates  function
to artificially  strengthen  the  metric–disturbance  relationship  resulting  in  MMIs  that  do  not  accurately
measure  impacts  of human  disturbance.  We  also  find  that  a “whole-set  modeling  approach”  requires
fewer  assumptions  and  is  more  efficient  with  the  given  information  than  the  more  commonly  applied
“reference-set”  approach.

©  2013  Elsevier  Ltd.  All  rights  reserved.
. Introduction

The enterprise of bioassessment (evaluation of the condition
f an ecosystem using biological surveys – Barbour et al., 1999)
as had a long history and is increasingly relied upon to guide the
anagement of natural resources. One tool of bioassessment that

s increasingly being used is the multimetric index (MMI,  Hering
t al., 2006). MMIs use biological or ecological measurements, often
ompiled into metrics, to quantify and serve as a surrogate for
he degree to which human disturbance has influence on bio-
ogical communities. While originally applied to streams under

he name Indices of Biological Integrity (IBI) (Karr, 1981, 1991),

MIs have now been developed for a number of different systems,
ncluding wetland plants (Mack, 2001; Rocchio, 2006), terrestrial

∗ Corresponding author. Tel.: +1 337 266 8653.
E-mail address: schoolmasterd@usgs.gov (D.R. Schoolmaster Jr.).

470-160X/$ – see front matter © 2013 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.ecolind.2013.01.015
invertebrates (Kimberling et al., 2001) and lakes (O’Connor et al.,
2000) and have been applied at a range of spatial scales from local
(Wallace et al., 1996) to continental (Pont et al., 2006). Indeed the
concept represented by MMIs  has been suggested to represent an
important integrative concept in ecology (Ford and Ishii, 2000).
To be useful to resource managers, an index must meet at least
three criteria; (1) it must be sensitive to human disturbance (2) it
should measure variation in metrics and disturbance at a scale that
is useful for management and (3) it should include interpretable
metrics. Individual metrics are typically combined into a “multi-
metric” index (MMI), which provides an overall score of integrity
for a system (see Kurtz et al., 2001 and Andreasen et al., 2001 for
discussion of criteria for MMIs)

The development of a MMI  requires a number of decisions.

These decisions relate to, for example, the criteria for selecting
metrics (Karr and Chu, 1997; Barbour et al., 1999; Stoddard et al.,
2008) and the scaling of metrics (Blocksom, 2003). One particu-
lar aspect of MMI  development that has been receiving increasing

dx.doi.org/10.1016/j.ecolind.2013.01.015
http://www.sciencedirect.com/science/journal/1470160X
http://www.elsevier.com/locate/ecolind
mailto:schoolmasterd@usgs.gov
dx.doi.org/10.1016/j.ecolind.2013.01.015
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Fig. 1. Causal network showing situation where an environmental covariate (E)
12 D.R. Schoolmaster Jr. et al. / Eco

ttention is the potential impacts of environmental covariates on
he interpretability of individual biological or ecological metrics
Wiley et al., 2003; Baker et al., 2005; Cao et al., 2007; Whittier
t al., 2007; Stoddard et al., 2008; Hawkins et al., 2010). In this con-
ext, environmental covariates refer to natural gradients such as soil
exture, elevation, aspect, etc., that may  affect the degree of human
isturbance at a site and/or aspects of the biological community.

Environmental covariates can interfere with effective metric
election in two ways: (1) Certain patterns of causal connec-
ions between environmental covariates and ecological metrics
an obscure the true effect of disturbance, resulting in the non-
election of ecosystem components that are in fact strongly affected
y human activities, (2) some patterns of causal connections among
ovariates and metrics can exaggerate the true effects of human dis-
urbance and result in selection of metrics that are not informative

easures of system response. Explaining how each of these may
ccur is a goal of this work and is described in later sections. But, we
hould expect that in most environments, complex environmental
nfluence on bioassessment measures will exist and both obscur-
ng and exaggerating influences may  be occurring simultaneously,

ith unknown net effects.
Currently, there are at least three strategies employed to

itigate the effects of environmental covariates on MMIs. The
pparently oldest and most frequently used approach is to attempt
o avoid problems by developing separate indices for (presumably)
ifferent homogeneous sub-regions of the study area (Barbour
t al., 1999). We  do not address this approach here, except to note
hat it may  be impractical at smaller spatial scales where sample
izes are not large, it cannot address interactions among environ-
ental covariates and it results in multiple MMIs  where one, more

eneral MMI  would be preferable. Another prominent approach is
o use a “minimally impacted” reference set of sites to develop mod-
ls of the effects of environmental covariates on metrics and then
se these models to remove such effects in the entire (reference and
on-reference) set of sites (Cao et al., 2007; Whittier et al., 2007;
toddard et al., 2008; Hawkins et al., 2010). A third, less-commonly
pplied approach uses the set of all sites to simultaneously model
he effects of disturbance and environmental covariates on metrics
nd then adjusts metrics based on model parameters (Wiley et al.,
003; Baker et al., 2005).

Controlling for confounding effects so that focal relationships of
nterest (e.g., the effects of human disturbance on biotic conditions)
an be interpreted causally is a long-standing dilemma in statistics
e.g., Pedhazur, 1997; Cohen et al., 2003; Pearl, 2009). Increas-
ngly, it is recognized that a structural equation approach is needed
Grace, 2006) and that such an approach should be informed by a
raphical modeling perspective that compensates for the absence
f a causal language in probability theory (Pearl, 2010). Absent

 graphical specification of causal assumptions, statistical adjust-
ent oversimplifies the interpretive implications and fails to guide

he scientist as to the various options available for modeling their
ata. These ideas are expanded upon and an example of the use of
ausal networks for metric adjustment is described in Appendix A.

Our goals in this paper are (1) to demonstrate the negative
mpact that the effects of environmental covariates can have on
roducing effective and interpretable MMIs  and (2) to evalu-
te the efficacy of different methods of metric adjustment. We
elieve it is important for the conceptual development of this large
nd complex topic that underlying assumptions be conveyed as
learly as possible and we use graphical models of causal networks
Grace, 2006; Pearl, 2009) to describe various scenarios so that
e can better interpret the effects of various relationships among
ovariates, human disturbance and biological metrics (Fig. 1). We
nd our treatment with a suggested set of steps for modeling
elationships and adjusting metrics to aid in their selection for
MIs.
influences both patterns of human disturbance (D) and metric expressions (m). The
network on the right side of the figure implies the equations given for the statistical
relationships on the left. See Appendix A for more details.

2. Effects of environmental covariates

2.1. Scenario methods

In order to examine the potential effects of environmental
covariates on the MMI  construction process and to test methods of
metric adjustment, it is necessary to construct scenarios where the
effects of all factors are known. For this reason, we have simulated
a series of data sets based on a variety of causal situations com-
monly encountered in real data. Each simulated data set includes
a measure of human disturbance (D) and one or more biological
metrics (m). For each scenario, we  embed the essential relation-
ships in a causal network that includes one to many environmental
covariates (E) that may be associated with the metric and/or the dis-
turbance measure as well as with one another. For the purpose of
this paper, we consider environmental covariates to be factors that
are exogenous with respect to D and m (i.e., the covariates have
no arrows pointing to them from other variables in the model).
In other words, we will consider systems described by graphical
models in which E may  influence D and m,  but not vice versa (Note
that in cases where D influences E, adjusting for E will remove part
of the effect of D; thus, this situation is one where adjustment is
not appropriate.). This is the typical assumption for metric adjust-
ment (e.g. Stoddard et al., 2008). We  examine (1) linear networks
of increasing complexity, (2) networks that include multiplicative
effects and (3) networks that include non-linear relationships.

For simulations, exogenous variables in networks were instan-
tiated by drawing normally distributed pseudo-random numbers,
using the “Mersenne Twister” algorithm of Matsumoto and
Nishimura (1998).  Values for endogenous variables (i.e., those
affected by other variables in the model and thus having arrows
pointing to them in the graphical models) were calculated by
applying the network-implied equations, plus normally distributed
random error (Fig. 1). Unless otherwise stated, an arrow in a net-
work diagram indicates a linear effect of the variable at the tail on
the variable at the head. Specific equations used for simulation are
given in Appendix B.

The disturbance variable (D) was transformed to have a uniform
distribution of values between 0 and 9. The transformation function
used was  F(D) = min  (I > rank(Di) × 10/n) − 1, where I is the set of
integers and n is the number of simulated sample sites. The function
F(x) = min(I > x) is implemented on many programming platforms
as the “ceiling” function. We  chose this form of D to provide even
coverage across potential values.

In this section, we demonstrate the variety of effects that dif-
ferent scenarios can have on the observed correlation between
disturbance and the metric. We chose correlations as the parame-

ter of interest because it is the summary statistic most often used in
the MMI  construction process to detect the association between a
metric and disturbance. We  quantify the effects of environmental
covariates as the difference in strength of correlation between D
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Fig. 2. Causal networks representing different scenarios for environmental covari-
ates. Network (a) represents Scenarios I and III. Network (b) and (c) are different
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As in Scenarios I and II, for the interactive case (Scenario IV),
environmental covariates can have a wide range of influences on
the bivariate relationship between D and m (Fig. 6). In general,
ases of Scenario II. Networks (d) and (e) have both direct individual effects and an
nteractive effect and are discussed in Scenario IV.

nd m with and without the effects of the network of covariates
. That difference is expressed as �cor = cor(mE=0,D) − cor(m,D),
here mE=0 refers to a metric unaffected by covariates. For this

nalysis, we assume that biological metrics are adversely affected
y disturbance; thus, we expect cor(mE=0,D) < 0. For real data, raw
etrics may  be positively or negatively related to D and in such

ases, those that are positively related to D are often “reflected”
reversed) before being included in a MMI.  Values of �cor < 0 indi-
ate that the network of environmental covariates obscures the true
trength of effect of D on m.

For the simulation method described above, the possible out-
omes for measured association between D and m can be described
nalytically by recognizing that a correlation can be understood
s the magnitude of the bivariate relationship standardized by the
otal variation in the system. We  use this insight to develop analyt-
cal models of the potential effects of environmental covariates on
he measured association between D and m.  Those analyses, which
ollow the scenarios described below, can be found in Appendix
. Since there are many ways that environmental covariates may
ffect the relationship between human disturbance and biologi-
al metrics, we proceed in this paper by presenting a number of
nstructive hypothetical scenarios to examine the types of effects
nvironmental variables can have on the observed correlation
etween D and m. In these scenarios, we assume only a single
ovariate is involved for simplicity.

Scenario I: Only the metric is affected by environmental covari-
te (Fig. 2a). For example, small scale variation in soil properties
hat affect plant growth, but do not affect the probability or degree
f human disturbance.

Scenario II: Metric and disturbance are both influenced by envi-
onmental covariate (Fig. 2b). For example, elevation can affect both
ccessibility to humans and be strongly correlated with factors that
ffect plant and animal communities.

Scenario IIa: A special case of Scenario II is spurious correlation
Fig. 2c), in which the covariate affects both the metric score and
uman disturbance, but human disturbance does not directly affect

he metric. Spurious correlation can result in selecting metrics for
 MMI  that are not responsive to disturbance.

Scenario III: Non-linear environmental covariates. Many
etrics, especially community level metrics are known to vary non-

inearly along environmental gradients. For example, plant species
ichness is often found to be a unimodal function of productivity
Grace, 1999; Gough et al., 2000; Mittelbach et al., 2001).
Scenario IV: Interactive networks. It is possible for environmen-
al covariates and disturbance to interact in such a fashion as to
ave a multiplicative effect on a metric (Fig. 2d,e). This can happen
l Indicators 29 (2013) 411–419 413

if the effect of an environmental covariate on a metric is a func-
tion of the degree of disturbance. For example, plant productivity
can be affected by water availability and also by disturbance from
cattle grazing. For physiological reasons, the efficiency with which
plants produce biomass at a given water level depends on the level
of grazing damage sustained by the plants. In symbols,

m = ˇE(D)E + ˇDD and ˇE(D) = ˇE0 + ˇE×DD,

∴ m = ˇE0 E + ˇE×DDE + ˇDD

where ˇD < 0, ˇE×D < 0 and ˇE0 > 0.

2.2. Scenario simulations

2.2.1. Scenario I
The observed relationship in simulations where there were no

environmental covariates affecting either metrics or disturbance
exhibited a correlation of ∼−0.65 (based on a sample size of 200).
In subsequent comparisons, we  will refer to the standardized un-
obscured effect of D on m as the “true” effect for simplicity, where
the true effect is measured as the partial correlation of m and
D. For Scenario I (Fig. 2a), simulation results (Fig. 3) confirm the
analytical expectation (Appendix B) that the influence of an inde-
pendent environmental covariate on a metric will be to decrease
the strength of the observed correlation between disturbance and
metric (holding constant the true effect of D on m,  which is the
case for all of the simulations). Fig. 3a shows that the correlation
between D and m in the absence of the environmental covariate
is stronger than when the effect of the environmental covariate
included on the metric (Fig. 3b). This result will be quite general
because any additional cause of variation in m independent of the
effect of disturbance (such as an E uncorrelated with D) will ele-
vate the unexplained error variance for m, decreasing the observed
strength of association.

2.2.2. Scenarios II and III
For the case where there is an environmental covariate (perhaps

a topographic gradient) that influences both patterns of human
development and native ecosystem characteristics (a situation rep-
resented in Fig. 2b), more complex influences on observed D–m
relationships are possible. Simulation results confirm the analyti-
cal expectations described in Appendix B. If the indirect effect of
E on m via D is of the same sign as the direct effect of E on m, we
can expect a correlation between D and m that is stronger than the
true effect (compare Fig. 4b to Fig. 4a, for an example with real
data see Appendix C: Example 2). In the case where the indirect
effect of E on m via D is of opposing sign to the direct effect of E on
m, the observed correlation between D and m can be substantially
weaker than the true effect (compare Fig. 4c to Fig. 4a) or even of
opposite sign (compare Fig. 4d to Fig. 4a, for an example with real
data see Appendix C: Example 1). Because indirect effects of D on m
can be quite strong, it is possible to observe significant correlations
between D and m even when the true effect is zero. Such relation-
ships are often referred to as spurious (see Fig. 5 for an example).
Such results can be generated regardless of whether effects in the
model are linear or non-linear.

2.2.3. Scenario IV
the expectations are the same as in Scenarios I and II; however,
the results can include curvilinearities in responses that bring an
additional complexity to the metric adjustment enterprise.
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. Quantitative assessment of metric adjustment
rocedures

.1. Quantitative assessment methods

As stated previously a MMI  should satisfy a number of crite-
ia; two of which being, that it is sensitive to the effects of human

isturbance and that it be comprised of interpretable metrics.
hese require that the confounding influences of environmental
ovariates are removed from the metrics. Recently, two meth-
ds have been used to quantitatively determine and remove the
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ween D and m.  (b) The observed correlation between D and m is weakened by the

effect of environmental covariates from candidate metrics; we  refer
to them as “Reference-set residualization” (RSR) (Whittier et al.,
2007; Stoddard et al., 2008), and “Whole-set residualization” (WSR)
(called “regional normalization” by Wiley et al., 2003).

Both methods are similar in that they consist of two  steps, esti-
mation and residualization. Each models the metric as a function
of environmental covariates and then uses the model to adjust

the observed metric values. However, they differ in how they deal
with human disturbance. The RSR methodology models only the
subset of metric values that come from “reference” sites, which
are presumably free from the effects of human disturbance. This
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etric when they are only causally related through an environmental covariate.

In  this section, we examine the ability of both RSR and WSR
to recover the actual relationship between the metric and dis-
turbance in each of the scenarios above. To do this, we  create
a data set corresponding to a causal network, apply the RSR
or WSR  method and measure the percent error as the actual
correlation versus that observed after the metric adjustment proce-
dure, [cov(mE=0,D) − cov(madj,D)]/cov(mE=0,D)×100. Positive values
of this metric indicate that the adjustment method has resulted in

an artificially low correlation; negative values indicate that metric
adjustment resulted in an artificially high correlation.

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●
●

●●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

0 2 4 6 8

−
2

−
1

0
1

2
3

ββD*E=0.2
r= −0.13b

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

0 2 4 6 8

−
3

−
2

−
1

0
1

ββD*E=−2
r= −0.91d

bance(D)

rent values of the interactive effect of an environmental covariate and disturbance



4 logica

s
e
r
t
m
a
i
v
t

3

e
m
a
r
i
g
v
p
F
o
t

3

t
v
i
d
t
t
t
s
c
w
e
e
i
c

s
A
l
t
v
t

3

o
t
a
t
R

r
1
t
s
fi
(

16 D.R. Schoolmaster Jr. et al. / Eco

For each causal network, we repeated the process 1000 times at
ample sizes ranging from 50 to 3200 to examine accuracy (percent
rror), precision (variation in percent error), and efficiency (error
ange/sample size) of each method. Because our goal is to examine
he effectiveness of metric adjustment methods, we base the esti-

ated coefficients used for adjusting on the true model. We  did not
dd a model selection step in this case, which would be necessary
f the true model were unknown. For the simulations, sites with a
alue of D < 3 (D ranged from 0 to 9) were defined as members of
he reference set.

.2. Scenario I

For situations structured as in scenario I (Fig. 2a), in which the
nvironmental covariate affects only the metric, both methods of
etric adjustment result in average errors of less than 1%. However,

t all sample sizes, the accuracy of metrics adjusted by Whole-set
esidualization is about twice that made by Reference-set residual-
zation. In addition, the precision of WSR  adjusted metrics is much
reater than that of RSR, especially at small sample sizes. The larger
ariation of the RSR method results directly from the smaller sam-
le size used in the models to estimate the effect of the covariate.
or example, for the results shown in Fig. 7a, the standard deviation
f the estimated coefficient (ˇE) was over twice as large as that of
he WSR  method.

.3. Scenario II

When the environmental covariate affects both the metric and
he disturbance measure (Fig. 2b), RSR results in some bias, even at
ery larger sample sizes (Fig. 7b). The average percent error is pos-
tive, indicating that on average the RSR tends to over-adjust, thus
iscarding part of the disturbance signal in the metric. As a func-
ion of sample size, the average percent error fell from near 19% at
he smallest sample size to 6.6% at the largest (Fig. 7b). In fact, at
he largest two sample sizes, the 95% confidence intervals of the
imulations do not include zero, suggesting that RSR is asymptoti-
ally biased (i.e., it will never converge to the correct answer even
ith infinite sample size). The RSR method also tends to make large

rrors, especially at small sample size. At the sample size of 50, RSR
rrors of over 100% fall within the 95% confidence interval indicat-
ng that this method may  result in adjusted metrics whose sign of
orrelation with D is opposite of the true relationship.

WRS  resulted in average percent error of just over 1% at the
mallest sample size, but well under 1% for all other sample sizes.
s with RSR, the size of the errors that WRS  tended to make was

arger for networks of this structure than Scenario I, although these
end to decrease quickly as sample size is increased. The increased
ariation in the measurement is caused by increased variation in
he metric m which is caused by the covariance between D and E.

.4. Scenario III

The relative abilities of RSR and WSR  to adjust metrics in the case
f curvilinear environmental covariates and cov(D,E) = 0 is similar
o the linear case; RSR making larger errors on average and gener-
ting greater variation in the distribution of errors (Fig. 7c). Again,
he larger errors come from the smaller sample size used by the
SR estimating models.

Both the accuracy and precision of the RSR method are greatly
educed if cov(D,E) /= 0 often resulting in metrics with error over
00% for samples sizes under 400 (Fig. 8). This happens because

he covariance between D and E causes reference sites to only
ample a portion of the environmental covariate, thus making it dif-
cult for the model to make accurate estimates of the non-linearity
Fig. 8a). Thus, RSR uses a smaller sample size and a biased sample to
l Indicators 29 (2013) 411–419

estimate the non-linear effect of the environmental gradient. WSR
performs as well in this case as it did in the simpler linear case
(Scenario II).

3.5. Scenario IV

In the case where D and E interact to determine m,  RSR fails
to make accurate adjustment regardless of sample size (Fig. 7d).
As in the non-linear case, this happens because the relationship
between E and m in the reference set is not representative of the
relationship in the whole set (Fig. 8b). If the interaction term (ˇD×E)
is the opposite sign of the main-effect (ˇE), this effect is even worse,
producing average percent errors well over 100 at all sample sizes.

The WRS  produces accurate adjustments to metrics with
interactive effects, although the WRS  adjusted metrics are less pre-
cise than comparable non-interactive networks. This reflects the
increased variation in the metric relative to non-interactive sce-
narios and the increased difficulty in obtaining accurate estimates
from interactive models.

4. Effect of environmental covariates on MMI  sensitivity to
human disturbance

One reason for combining metrics into MMIs is to gain a more
robust characterization of ecosystem responses than could be
achieved by any of the individual metrics alone. Although one
hopes to assemble metrics that are both sensitive to disturbance
and interpretable, these goals are not the same. We  have shown
how environmental covariates can interfere with both the inter-
pretability and sensitivity of individual metrics. In this section, we
use simulations to examine whether sensitivity to disturbance can
be recovered through the process of creating an index from multiple
unadjusted metrics.

We  generated environmental and disturbance variables as
described above. In addition, for each of the five metrics, 15
candidate metrics were generated as m = ˇDD + ˇEE + ε where
ε∼N(0, 4).  We  generated five sets of metrics corresponding to
the different scenarios described above. The first metric type, m1,
which represents the true relationship, was generated from metric
scores that range from 0 to −∞ and are influenced only by human
disturbance; thus, with −ˇD ∼ � (1, 2), ˇE = 0, where x ∼ � (a, b) indi-
cates that x is gamma-distributed with shape parameter a and scale
parameter 1/b. The next, m2 corresponds to Scenario I, where metric
scores are influenced by both disturbance and an independent envi-
ronmental covariate; thus, −ˇD ∼ � (1, 2), ˇE = � (1, 2), cov(D, E) = 0.
We also generated three metrics related to possibilities of Scenario
II where disturbance and the environmental covariate are corre-
lated either negatively or positively: m3(−ˇD ∼ � (1, 2), ˇE = � (1,
2), cov(D, E) < 0), m4(−ˇD ∼ � (1, 2), ˇE = � (1, 2), cov(D, E) > 0) and
m5(ˇD = 0, ˇE = � (1, 2), cov(D, E) < 0).

Environmental covariates generally strengthen the observed
correlation between D and m in metrics of the m3 type because
of the positive correlation between disturbance and covariate.
For metrics of the m4 type, where disturbance and covariate are
negatively correlated, covariates generally weaken the observed
correlation between D and m.  Metrics of type m5 represent a spu-
rious relationship between D and m due to mutual dependence on
the environmental covariate.

The candidate metrics were scaled to unitless quantities using
the Blocksom CAUL method (Blocksom, 2003), which scales metrics
to values between 0 and 10. Metrics were then screened for

sensitivity to disturbance. Scaled metrics exhibiting significant cor-
relation with D at  ̨ = 0.05 were accepted for inclusion in the
index. Selected metrics exhibiting a positive relationship with D
were reflected as m′ = 10 − m to ensure an index with a negative
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esidualization (open circles).

elationship with disturbance. The MMI  was created by calculat-
ng the mean of the (up to) 10 metrics with the highest observed
trength of correlation metrics. The sensitivity of the index was
easured as its correlation with D. This process was repeated 1000

imes to allow us to estimate the variability of the result.

The average sensitivity of the simulated indexes varied in ways

hat could be predicted from the ways that environmental covari-
tes affected the component metrics. Fig. 9 shows the mean, 5th and
5th percentiles of the sensitivity of each metric type. These MMIs
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are and how to collect data on them. It is also helpful for one to
elationship. Numbers at top show values of correlation of individual metrics with
 averaged over all simulations.

etrics even if the average correlation between candidate metrics
nd D is low.

The difference in sensitivity between m1 (not obscured by
ovariates) and the others at each realization of the simulation indi-
ates the effect not adjusting metrics would have on the sensitivity
f the MMI.  Failing to adjust metrics of the m2-type (Scenario I) for
nvironmental covariates led to a MMI,  on average, 13% less sen-
itive than an index constructed with correctly adjusted metrics
nd resulted in an index that was just as or more sensitive than the
nobscured index 0.6% of the time. Simulated metrics of the m3-
ype, in which covariates inflate the correlation between D and m,
lso increased average sensitivity of the MMI  (by 7.1%) to lead to a
ore sensitive MMI  than those constructed from correctly adjusted
etrics 99.3% of the time. Metrics of type m4, which are similar to
3 but with a change in sign of one path, result in MMIs that are

.1% less sensitive on average, but would result in an index as strong
r stronger than one made with correctly adjusted metric 7.8% of
he time. Finally, indexes made with metrics that had only spuri-
us correlation with D, were 17.5% weaker on average and could
e expected to produce a MMI  as sensitive as one constructed with
djusted metrics 4.5% of the time.

. Discussion

Our analyses show that the network of environmental covari-
tes can affect the observed relationship between a biological or
cological metric and human disturbance. Environmental covari-
tes may  strengthen or weaken observed relationships depending
n the structure of the network and the functional form of the rela-
ionships. This poses serious problems for effective metric selection
nd interpretability of MMIs. Because most MMI  construction pro-
edures (Karr and Chu, 1997; Barbour et al., 1999; Stoddard et al.,
008) involve selection of metrics that show the strongest relation-
hip with the measure of human disturbance, failing to model and
djust candidate metrics will result in a systematic bias towards

hose metrics that are products of causal networks that artifi-
ially strengthen the metric–disturbance relationship and are most
trongly affected by environmental covariates.
l Indicators 29 (2013) 411–419

As evidence of this potential problem, we were able to simulate
a MMI  with what would be regarded as satisfactorily correlated
with human disturbance, from metrics that have only purely spuri-
ous relationships to disturbance (m5-type MMI). While the metrics
in those simulated MMIs  each had some ability to predict local
disturbance, there was  no direct causative relationship between
disturbance and the metrics (these metrics fail to satisfy Pearl’s
back-door criterion for causal relations (Pearl, 2009)). As a result,
the MMI  (and its component metrics) would be insensitive to any
management action taken to reduce human disturbance. As levels
of human disturbance were reduced, one would not find that metric
scores improved, but that they no longer were predictive of human
disturbance.

Others have recognized that environmental covariates could
interfere with MMI  performance and have suggested methods for
adjusting the metrics (e.g., Stoddard et al., 2008). Of the meth-
ods we  tested, we find that metrics can be adjusted for known
covariates most effectively with a “Whole-set” adjustment method
that uses all available data to model metrics as a function of the
known gradients and disturbance. This method not only produced
more accurate, precise and efficient adjustments, but it also elim-
inates the need for classification of the disturbance state of sites
into “reference” and “impacted” sites (another source of potential
error). Such an approach does, however, require the ability to esti-
mate human disturbance scores for individual sites (which may
not be compatible with certain large-scale surveys). These models
of metrics can be used to make predictions of the disturbance-free
range of variation of the metric (Dodd and Oakes, 2004; Kilgour
and Stanfield, 2006). While this approach has been criticized for
extrapolating beyond the data, it makes predictions based on the
largest set of data available and allows the assumptions going into
the designation of “reference sites” to be identified. In fact, the WSR
methodology could be characterized as using the set of all available
data to extrapolate one point on the disturbance gradient. Consid-
ering it as such is helpful for understanding why it is more effective
than “Reference-set” adjustment methods.

Where “Reference set” residualization fails, one reason it does
so is because it takes the opposite approach of WSR  to extrapo-
lation; it uses a subset of data from one point on a disturbance
gradient to extrapolate to the rest of the gradient. This leads to two
kinds of errors, those associated with producing accurate model
estimates from the reduced sample size, and those made because
reference samples systematically fail to sample the variation in the
environmental covariates. An example of this latter effect comes
from the multiplicative example described in Scenario IV. Where
disturbance and the environmental covariate interact to determine
the metric, the relationship between the metric and the covariate in
the reference set will not accurately represent the relationship else-
where along the disturbance gradient (Fig. 8), resulting in highly
biased adjustments. This does not only happen in interactive cases,
but wherever there is covariance between environmental covariate
and disturbance. The negative effects of this phenomenon tend to
be small when all relationships are linear, but can be very large if
any are non-linear.

6. Suggestions for constructing MMIs

Our analyses and simulations suggest that in order to produce an
interpretable MMI,  one should model the metrics for known envi-
ronmental covariates. This approach requires that before data are
collected, one considers what the major environmental covariates
consider potential causal networks for the system. Using graphical
models, such as Fig. 2 (and Appendix A), to represent the hypothet-
ical causal structure of the system will help determine how data
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hould be collected and which factors may  be usefully modeled as
nvironmental covariates.

Having a causal network hypothesis is important to determine
hich variables may  usefully be included in the analysis as envi-

onmental covariates. As stated earlier, we consider only exogenous
ariables that may  affect either disturbance or metrics, but not the
ther way around. An environmental measure that is affected by
isturbance and in turn affects the metric does not function merely
s a covariate, but as a causal mediator (Judd and Kenny, 1981;
race, 2006) or mechanism through which disturbance affects the
etric. Adjusting for variables that act as mediators would result in

iscarding part of the true relationship between D and m,  a serious
rror of a different sort. This provides yet another reason why the
evelopment of a causal network for a system can guide the MMI
evelopment process.

Failing to adjust for environmental covariates can lead to
iased metrics and MMIs. However, these effects can be miti-
ated by modeling and adjusting metrics. Both reference-set and
hole-set residualization can be effectively used when the causal

elationships among the metrics, human disturbance and the envi-
onmental covariates are simple. But, where the relationships are
omplex, only Whole-Set Residualization results in robust, precise
nd efficient adjustment of metrics.

ppendix A. Supplementary data

Supplementary data associated with this article can be
ound, in the online version, at http://dx.doi.org/10.1016/j.ecolind.
013.01.015.
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