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Abstract. Since 2006, the National Park Service’s Northeast Temperate Network (NETN) has been

monitoring forest health in 10 national park units in the northeastern U.S. using a protocol adapted from

the U.S. Forest Service Forest Inventory and Analysis Program. To ensure current methods are appropriate

for monitoring long-term trends in forest composition, structure and function, we performed a power

analysis of key forest metrics using data collected in each park and covering two four-year survey cycles.

We determined statistical power by repeatedly generating bootstrapped datasets with specified percent

change between survey cycles in the value of each metric, and then testing whether a mixed effects model

detected a significant change. We applied effect sizes ranging from a 50% decline to a 50% increase in 5%

increments. Power analyses indicated that, for most key forest metrics, our monitoring program met the

target of detecting a 40% change in a metric over a 12-year period with 80% power and a Type I error rate

of 0.10. Power also tended to improve with subsequent repeated surveys. Native species richness and live-

tree basal area metrics consistently performed well for all parks. Average percent cover of plant groups

performed better than quadrat frequency. Regeneration metrics performed best in parks with low or high

regeneration rates. Coarse woody debris volume, snag abundance, and invasive species richness did not

meet the trend detection target in multiple parks. In most cases, metrics that failed to meet the trend

detection target in one or several parks had high proportions of zeros and relatively low overall values for

the respective park. In cases where high metric variability was the reason for poor trend detection, results

indicated that post-stratifying can sometimes improve power. We developed the power analysis tool in R to

be applicable for a range of data types, including proportional and count data, and for any number of

sampling areas (e.g., parks) and sampling units (e.g., plots). Our approach represents one of the few tools

available that can assess the power to detect change over time using mixed effects models.
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INTRODUCTION

In frequentist statistics, power is the probabil-
ity of correctly rejecting the null hypothesis of
‘‘no change’’ when a change has in fact occurred.
Power is influenced by sample size and variabil-

ity, measurement error, effect size, and the Type I
error rate (probability of rejecting the null
hypothesis when it is true; Cohen 1988), and it
is important because it guides decisions on the
sample size needed to detect a given effect.
Power can be improved by reducing measure-
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ment error and sample variability, and/or in-
creasing the sample size or Type I error rate
(Cohen 1988, Di Stefano 2001). Power to detect
change is generally higher for large changes and
lower for small changes (Di Stefano 2001). While
knowing power is of interest for all ecological
studies, it is particularly important to know for
long-term monitoring programs, since a moni-
toring program with poor power will not be able
to detect biologically meaningful changes in the
resource being monitored (Urquhart et al. 1998,
Legg and Nagy 2006). Power analyses are
investigations of statistical power, and are
conducted with estimates of sample variance,
sample size, effect size, and desired Type I and
Type II error levels (Zar 1999). A typical power
analysis explores multiple sample sizes to deter-
mine the optimum number of samples, or
investigates the ability to detect a given effect
when error levels are adjusted. Power analyses
can also be used to explore proposed changes in
methods or stratification, which can affect sam-
ple variance. A properly implemented prospec-
tive power analysis can be a valuable tool during
the design and early implementation of a
monitoring program, because it can provide
important information about the strength of
evidence when no change is detected, and also
show where improvements can be made in the
monitoring program (Legg and Nagy 2006). That
is, when the power to detect change in a metric is
low, monitoring staff should consider improving
measurement precision, increasing sample size,
increasing the Type I error rate, or revising
monitoring objectives and removing that metric
from the monitoring protocol. Ideally, power
analyses are performed during the initial stages
of program development to ensure that sampling
efforts are worthwhile from the beginning (Foster
2001, Di Stefano 2003).

Unfortunately, in many situations power anal-
yses do not match the planned approach for
statistical analysis after the data are collected (or
as the data are collected in the case of long-term
monitoring programs). Without matching the
analytical methods, the power analysis is unlike-
ly to be relevant to the study or monitoring
program. Other problems include violation of
key assumptions, insufficient data available to
conduct the analysis, and inaccurate estimates of
parameters used in the analysis (Morrison 2007).

For example, many monitoring programs are set
up as fixed plots within a network of sites, and
simple power analyses and existing software
tools (such as MONITOR; Gibbs and Ene 2010)
are not set up to handle this spatial and temporal
structure. Analyzing these datasets requires
sophisticated statistical tools, such as mixed
effects modeling, to properly assess trends
(Wang and Goonewardene 2004, Zuur et al.
2009). Therefore, to accurately assess power, we
need a dataset that includes repeated measures,
and we need to use a model structure and
approach that closely mimics how we plan to
analyze our long-term datasets. Unfortunately,
there are no readily available tools to conduct a
power analysis using mixed effects models. To
fill this need, we developed a power analysis
simulation tool in R that uses mixed effects
models, and that can be applied to a range of
data types (e.g., proportional and count data), for
any number of sampling sites (e.g., parks) and
sampling units (e.g., plots), and a range of
repeated surveys.

In this paper, we demonstrate our simulation
tool, which is broadly applicable for evaluating
the power of long-term monitoring metrics (i.e.,
repeated measures data) collected at randomly
located fixed sampling units that are sampled at
fixed time intervals within a network of sites. The
data used in the simulation can be from pilot
data, from the first two rounds of data collection
at all or a subset of plots, or they can be
generated by the researcher’s professional judg-
ment. The simulation bootstraps populations
(i.e., collections of randomly located plots) with
site-specific means and variances (based on the
data) and then systematically applies a range of
linear changes over time. We use mixed effects
models to analyze the power to detect change
that occurs for the entire group of sites, and for
each site (e.g., park) independently of the others.
By using a model structure very similar to the
models we plan to use for analyses of our long-
term data and explicitly accounting for the
spatial and temporal structure of our data, we
have accounted for the most common pitfalls of
power analyses (Morrison 2007).

We applied this new simulation approach to
forest health monitoring data collected by the
Northeast Temperate Inventory and Monitoring
Network (NETN) of the National Park Service
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(NPS) in eight national park units in the
northeastern U.S. since 2006 (Tierney et al.
2013). NETN adapted the monitoring protocol
from the U.S. Forest Service Forest Inventory and
Analysis (FIA) Program to focus more on
ecological rather than silvicultural metrics. Our
methods are also compatible with the five other
NPS Inventory and Monitoring (I&M) networks
currently monitoring forest condition in eastern
U.S. national parks. NETN includes national
park units in New Jersey, New York, and New
England (Fig. 1). Forests in these parks are
primarily composed of northern hardwoods with
soils derived from glacial sediment, except at
Acadia National Park (ACAD) where the dom-
inant forest type is spruce-fir.

The overall goal of the NETN long-term forest
monitoring program is to monitor status and
trends in the structure, function, and composition
of NETN forested ecosystems in order to inform
management decisions affecting those systems
(Tierney et al. 2013). We interpret forest condition
to park managers using an Ecological Integrity
Scorecard that we developed specifically for the
parks in NETN. The Ecological Integrity Score-

card rates condition for a suite of metrics that
address forest structure, composition and func-
tion (Tierney et al. 2009). While the Ecological
Integrity Scorecard is a useful tool for evaluating
status of forest health in NETN parks, tracking
change in key forest metrics over time is also an
important function of our monitoring program.
We therefore must be capable of detecting change
in key metrics of forest condition with sufficient
statistical power. While a Type I error rate of 5%
and Type II error rate of 20% are the conventional
error rates applied in most ecological literature,
this approach weighs the cost of making a Type I
error much higher than the cost of making a Type
II error (Di Stefano 2003, Legg and Nagy 2006).
For our forest monitoring program, the cost of
missing an actual trend (Type II error) is
potentially very high, and it must be balanced
with the cost of falsely detecting a trend (Type I
error). Therefore, we define sufficient statistical
power for the NETN forest monitoring program
as having (at a minimum) 80% power to detect a
40% change (effect size) over a 12-year period
(i.e., three survey cycles) while controlling Type I
(alpha) at 10% and Type II (beta) error at 20%.

Fig. 1. Map of the Northeast Temperate Inventory and Monitoring Network.
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Several power analyses were performed by
other eastern NPS I&M networks during the
protocol development stage for NETN forest
monitoring (Comiskey et al. 2009, Schmit et al.
2009). While these analyses helped inform our
methods, plot size, and plot allocation in each
park, they were based on pilot data that were
collected from one survey cycle. Without incor-
porating repeated measures of the same plots
(i.e., temporal variability), results from these
studies most likely underestimated the power
to detect trends and were considered prelimi-
nary. In addition, the very nature of long-term
monitoring, which involves repeated measure-
ments from fixed locations, generates datasets
that violate one or more of the underlying
assumptions of simple linear regression (e.g.,
independence and homogeneity). We developed
our simulation tool to overcome these problems
and help us evaluate our ongoing monitoring
program.

METHODS

Sampling methods
We sample permanent forest plots at four-year

intervals using a rotating panel design, with one
survey cycle consisting of four panels (Table 1).
We sample one of the four panels each year, with
each panel including one-fourth of the ACAD
plots and half of the plots for a group of the
remaining parks. We sample each of the histor-
ical parks or historic sites in alternate years. For
example, in 2006 and in 2010, we sampled the
first 44 plots in ACAD and the first 12 plots in
Marsh-Billings-Rockefeller National Historical

Park (MABI). In 2007 and 2011, we sampled the
second 44 plots in ACAD and the first 14 plots in
Morristown National Historical Park (MORR).
We randomly located plots within each park
using generalized random tessellation stratified
(GRTS) sampling (Stevens and Olsen 2004).

The permanent plot design is illustrated in Fig.
2. In the full, fixed-area (153 15 m2 at ACAD; 20
3 20 m2 at the other parks) square plots, we
collected basic information describing the site
(e.g., slope, aspect, physiographic class), qualita-
tively assessed stand structure and disturbances,
and photographed six standard scenes of the plot
to facilitate interpretation of other data collected
in the plot (Tierney et al. 2013). In the full square
plot, we tagged and measured each tree �10 cm
diameter-at-breast-height (DBH). For each tree,
we identified the species, measured the DBH,
and assessed its status (live/dead), crown posi-
tion (e.g., dominant, co-dominant, intermediate,
etc.) and condition. Within three 2-m radius
circular microplots per plot, we measured tree
regeneration by tallying tree seedlings by species
and height class, and measuring DBH of saplings
(�1 cm and ,10 cm DBH). For coarse woody
debris (CWD), we used line intersect sampling
along three 15-m transects originating at plot
center. To monitor understory composition, we
estimated percent cover by species of all vascular
plants within eight 1-m2 quadrats. We assessed
forest floor condition by visually inspecting for
evidence of microtopography, trampling, and
earthworms. To monitor forest soils, we collected
soil samples from a location adjacent to the plot
and had the soils analyzed chemically. Tierney et

Table 1. Northeast Temperate Network forest monitoring panel design. Each panel represents one year of

sampling and lists the number of plots sampled per panel in each park. The total number of plots is the number

of plots monitored in each park, and is the sample size generated by each bootstrap simulation. Plots in italics

comprised the initial dataset that was bootstrap sampled for this analysis.

Park

Cycle 1 Cycle 2

Total no. plots
2006 2007 2008 2009 2010 2011 2012 2013

Panel 1 Panel 2 Panel 3 Panel 4 Panel 1 Panel 2 Panel 3 Panel 4

ACAD 44 44 44 44 44 44 44 44 176
MABI 12 12 12 12 24
MIMA 10 10 10 10 20
MORR 14 14 14 14 28
ROVA 20 20 20 20 40
SAGA 10 10 10 10 20
SARA 16 16 16 16 32
WEFA 5 5 5 5 10
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al. (2013) contains complete details of the

sampling design and methods.

Data analysis

We performed power analyses on key forest

metrics related to ground layer abundance and

composition, tree regeneration, species richness,

CWD, snag abundance and live tree basal area

(Table 2). We derived average percent cover by

averaging percent cover class midpoints across

eight quadrats in each plot. While cover classes

were not evenly distributed (e.g., 1–2% versus

57–75%), estimation of mean plant cover using

similar cover classes has been shown to perform

equally to continuous percent cover estimation

(Damgaard 2014). Table 3 lists groups that were

included in percent cover and percent frequency

analyses. The invasive species list contained over

Fig. 2. Plot layout showing square tree plot with three nested 2-m radius regeneration microplots, eight 1-m2

vegetation quadrats, and three 15-m coarse woody debris (CWD) transects. Sx is location of soil sample.

Table 2. Description of metrics included in power analyses. Regeneration stocking index was developed by

McWilliams et al. (2002). Abbreviations: CWD, coarse woody debris; DBH, diameter at breast height.

Metric Definition Units

Average percent cover Average quadrat percent cover of guild or indicator %
Quadrat frequency Percent quadrat frequency of guild or indicator %
Native richness No. native vascular species in each plot no. species/plot
Invasive richness No. indicator invasive species in each plot no. species/plot
CWD volume Volume of CWD �10 cm diameter and �1 m long m3/ha
Snag abundance Density of snags �10 cm DBH stems/ha
Stocking index Weighted measure of tree seedling density by height class n/a
Seedling density Density of tree seedlings that are �15 cm tall and ,1 cm DBH stems/ha
Sapling density Density of saplings that are 1–9.9 cm DBH stems/ha
Live tree basal area Calculated for all trees �10 cm DBH m2/ha
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two dozen exotic plant species that are highly
invasive in northeastern forest, woodland and
successional habitats, and that can dominate and/
or persist under shaded conditions (Tierney et al.
2013). The deer-preferred species list included 15
common, highly visible herbaceous species that
are preferred browse for deer, and/or have been
shown or predicted to be intolerant of deer
browsing due to life history traits (Augustine and
Jordan 1998, Augustine and deCalesta 2003,
Tierney et al. 2013). The deer-avoided indicator
list was comprised of three herbaceous species
and one genus (Carex) that are considered
unpalatable to deer or resistant to deer browse,
and that have been shown to increase in
abundance under heavy deer browse pressure
(Augustine and Jordan 1998, Horsley et al. 2003,
Tierney et al. 2013). Species richness was the total
number of vascular species observed in each plot.
The status of each species (native or exotic) was
determined using NatureServe Explorer (Nature-
Serve 2012).

To calculate CWD volume, expressed in m3/ha,
we used Huber’s formula, which estimates CWD
volume using the diameter of each CWD piece
measured at the point of intersection with the
transect line (Marshall et al. 2000). We then
corrected CWD volume estimates for slope (Van
Wagner 1982). Snag abundance was the number
of snags within a plot converted to a per hectare
basis to account for different plot sizes among
parks. The stocking index was developed by
McWilliams et al. (2002), and assigned a weight
to each seedling based on its height class, with
higher weights for larger height classes. We
calculated the stocking index as the sum of the
weights across all height classes, and averaged
this sum over three 2-m radius microplots per
plot. The seedling density metric was the sum of
all tree seedlings that were greater than 15 cm

tall, and less than 1 cm diameter at breast height
(DBH), and was averaged across three microplots
and converted to a per hectare basis. The sapling
density metric was the number of tree species
that were 1.0–9.9 cm DBH, averaged over three
microplots and converted to a per hectare basis.

We performed bootstrap power analysis sim-
ulations using mixed effect models on key forest
metrics of NETN forest health data that repre-
sented half of two survey cycles (panels 1 and 2
from cycle 1 and cycle 2) and eight park units. We
did not use complete survey cycles (four panels)
because we began this analysis mid-way through
the second cycle of sampling, and only had
resample data from the first two panels of plots.
Because we used GRTS sampling to randomly
locate plots, we could analyze a subset of the full
collection of plots, and as long as the plots were
consecutively ordered by GRTS priority number,
the subset of plots was spatially balanced and
representative of the target population (Stevens
and Olsen 2004). A bootstrapped dataset is a
plausible dataset produced by randomly select-
ing data with replacement from a pilot or sample
dataset until a desired sample size is reached
(Manly 2007), which in this case is the total
number of plots currently established in each
park. For each metric, our simulation generated
250 bootstrapped datasets for each effect size,
model, and number of survey cycles in order to
produce a distribution of potential results for a
range of effect sizes. We chose mixed effects
models for our simulations because this type of
model allows estimation of certain ‘‘fixed’’ or
‘‘treatment’’ effects (e.g., park unit or trend over
time) while accounting for ‘‘random’’ effects,
such as randomly located plots (Zuur et al.
2009). We used the mixed effects model functions
available in the nlme package in R for our
analyses (R Development Core Team 2011,

Table 3. Description of species guilds examined in average percent cover and quadrat percent frequency power

analyses. Tierney et al. (2013) lists the species in the invasive, deer-preferred, and deer-avoided species groups.

Group Definition

Native herbs Native herbaceous species
Ferns Native species of ferns and fern allies
Graminoids Native species in Cyperaceae, Juncaceae, and Poaceae families
Invasives Priority invasive exotic plant species
Deer-preferred species Indicator list of herbaceous species that are preferably browsed by deer
Deer-avoided species Indicator list of herbaceous species that are unpalatable or toxic to deer, or are resistant to deer

browse.
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Pinheiro et al. 2012). Our sampling strategy is a
design-based spatial sample with a model-based
temporal sample, which Brus and de Gruijter
(2012) term a ‘‘hybrid sampling approach’’. Our
simulation and modeling process assumed that
sample units were spatially independent and did
not incorporate design-based spatial variance
because the focus was on temporal trend
detection rather than identification of spatial
patterns. If the temporal trends in nearby sites
are correlated, our approach would likely under-
estimate the true power that could be obtained
by incorporating spatial design-based variance.
Because we treated time as a fixed (model-based)
factor, our simulation tool is not appropriate for
monitoring approaches that are fully design-
based in time (such as complex temporal revisit
patterns). We also included park as a fixed effect
in the mixed effects models, and used the
varIdent function to model different variances
for each park.

Prior to bootstrapping, our R code performed a
user-specified data transformation to prevent
simulations from using impossible values (e.g.,
negative counts, proportions below zero or above
one, etc.). Metrics that could not be negative (i.e.,
live tree basal area, snags per hectare) were log
transformed. Metrics that ranged between 0 and
1 (e.g., percent cover data) were transformed
using a modified logit following Warton and Hui
(2011). The modified logit transformation added
a small fixed constant (e) to the logit numerator
and denominator to solve the issue with sample
proportions that equal 0 and 1, which otherwise
resulted in undefined values. The constant e was
defined as the smallest non-zero number in the
dataset, or the smallest difference between 1 and
the largest number less than 1, whichever was
smaller. In a few cases, bootstrapped datasets
had a tendency to result in all zeros for a park,
which resulted in no variance and ended the
simulation (e.g., average cover of invasives in
ACAD). To resolve this issue, we ‘‘jittered’’ the
original data by randomly adding small non-zero
values to 10% of the plots in the park with the
problem.

Bootstrapped datasets were generated by
randomly selecting values from the first sam-
pling cycle by park (first two panels in cycle one
of actual NETN data) to generate initial data
values for the desired total number of plots in

each park. In this case, the number of plots
generated in each bootstrap was the total number
of plots NETN currently monitors in each park.
Data for a resurvey of these plots were simulated
by applying an effect (between �50% and 50%,
see below) to the initial data values, and then
adding simulated sampling variation. The simu-
lated sampling variation was generated from a
normal distribution with a mean of zero and a
park-specific standard deviation equal to the
standard deviation of the differences in metric
values between the first and second sampling
cycle of each plot (based on the actual data). This
approach will overestimate sampling variation in
the presence of a temporal trend or annual
variation in the metric, as it assumes that all
variation between the two cycles is due to
sampling variation. Nevertheless, it provided a
conservative estimate of sampling variation
suitable for small datasets. Additional occasions
were simulated by applying an additional effect
to the initial data values, and again adding
simulated sampling variation.

Statistical power was determined by repeated-
ly generating datasets with a specified percent
change between sampling cycles in the value of
each metric, and then testing whether the mixed-
effects model could detect the change (modeled
as a linear trend). For the purposes of this
analysis, we used a Type II error rate of 20%
(i.e., 80% power), and used both the conventional
Type I error rate of 5%, and a 10% Type I error
rate to see how results compared. Our modeling
approach assumed variables were continuous
with normal error distribution. While some
metrics, such as seedling density and species
richness, may more appropriately be modeled as
count data (e.g., Poisson distribution), the nlme
package we used for this simulation tool does not
have a generalized mixed effects model function.
We chose the nlme package because of the
variance structure modeling features (e.g., varI-
dent). Our simulation tool could easily be
modified to run generalized mixed effects mod-
els, such as those offered by the glmer function in
the lme4 package (Bates et al. 2014), but this is
beyond the scope of this study.

We ran simulations for percent changes rang-
ing from a 50% decline to a 50% increase in 5%
increments. When simulating multiple cycles of
data, the R code allowed the level of change to
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occur between each cycle (cycle-to-cycle change)
or across all cycles (total change). For this
analysis, the percent change was the total change.
That is, for three cycles of data, changes were
limited to 625% between each cycle. There is an
option in our simulation tool to apply a constant
effect size across all cycles (e.g., applying a 50%
increase to every simulated cycle), but the results
of those analyses are beyond the scope of this
study. The percent change was first applied to all
parks to test the additive model with no
interaction, and then for each park (with no
change applied to the other parks) to test the
model with an interaction effect. The additive
model assessed the power to detect a uniform
change across all parks (best-case scenario),
while the interaction model assessed the power
to detect change at only one park (worst-case
scenario). Note that in the situation where there
is no effect for any park (0% change), the analysis
does not assess power. In this case, the percent-
age of times when a trend is detected should be
approximately equal to the Type I error rate
(alpha). Following the notation approach used in
Sullivan et al. (1999) and Raudenbush (1993) to
describe hierarchical models, the model state-
ment for our additive model was

Level 1: yij ¼ b0j þ b1jx1ij þ eij; eij ; Nð0;r2
j Þ

Level 2: b0j ¼ c00 þ t0j; t0j ; Nð0; s2
0Þ

b1j ¼ c10 þ t1j; t1j ; Nð0; s2
1Þ

where i ¼ plot (1–350); j ¼ park (ACAD, . . . ,
WEFA); yij ¼ the metric value at the ith plot
within the jth park; b0j¼ the intercept for the jth
park; b1j ¼ the slope associated with cycle (time;
1, . . . , 4) for the jth park; x1ij ¼ covariate (cycle)
for the ith plot within the jth park; eij¼ error term
for level 1 model, normally distributed with a
mean of 0 and park-specific variancer2

j ; c00 ¼
overall mean intercept for all parks; c10¼ overall
mean slope (due to cycle) for all parks; t0j ¼
random error term for level 2 model of level 1
intercept, normally distributed with a mean of 0
and variance s2

0; t1j¼ random error term for level
2 model of level 1 slope (due to cycle), normally
distributed with a mean of 0 and variance s2

1; and
the model statement for our interactive model
was

Level 1: yij ¼ b0j þ b1jx1ij þ b2jx2ij

þ eij; eij ; Nð0;r2
j Þ

Level 2: b0j ¼ c00 þ t0j; t0j ; Nð0; s2
0Þ

b1j ¼ c10 þ t1j; t1j ; Nð0; s2
1Þ

where b2j¼ the slope associated with cycle3park
for the jth park; x2ij¼ covariate (cycle 3 park) for
the ith plot within the jth park and all other terms
are defined as in the additive model.

In both model statements, the metric value was
the raw or transformed (logit or log) data, park
was a site containing multiple sampling units
(plots), and cycle was the index for the sampling
cycle.

For each set of simulations for a given metric,
additive and interaction mixed effects models
were fit based on two, three and four survey
cycles, and confidence intervals were calculated
for each bootstrapped population and multiple
levels of alpha (0.01, 0.05, 0.10, and 0.20) using
the parameter estimate for time (i.e., change
between cycles) and its standard error. Confi-
dence intervals that did not contain 0 were
considered significant, and the results of each
significance test were stored by effect size, park,
and simulation. Power was calculated as the
proportion of simulations where a trend was
detected (i.e., proportion of confidence intervals
that did not contain 0), and was calculated for
each effect size across the network and within
each park. This confidence interval approach
assumed that the error distributions of the model
were normal, and based on examination of
residual plots from the first model in each
simulation, this was a valid assumption for our
data. We included code in our simulation tool
that plots the residuals against fitted values and
residuals by park and cycle for the additive and
interactive models that were derived from the
first of the 250 simulations with an effect size of 0
to allow users to inspect the error distributions. If
the residual plots show patterns or violations of
normality, this confidence interval approach may
not be an appropriate method to assess whether
a trend was detected. Using the current number
of plots established in each park, we ran a total of
141,750 simulations on each metric: 250 boot-
strapped populations at each of 21 effect sizes,
two to four cycles of data, and nine scenarios
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(network-wide change or change at one specific
park). The R code that we used for the
simulations in this article, along with an example
dataset, are available as a Supplement.

In cases where parks had poor trend detection
due to high metric variability, we tested whether
post-stratifying the data (e.g., by land use
history) improved power. The stratified datasets
included data from all plots in the respective
park that had been sampled through 2013 (two
complete cycles of data), to increase the pool of
data per group for the bootstrap. Similarly, we
tested whether adding the second panel of plots
in Weir Farm National Historic Site (WEFA),
which increased the number of plots from 5 to 10,
improved the power. In MORR, we stratified by
Mature and Successional stand types. Mature
stands were defined as second growth stands
that had no history of cultivation and that
originated from areas cleared by General Wash-
ington’s forces around 1788 to 1789. The Succes-
sional category represented younger stands that
originated on abandoned field or pasture around
1920 or later. Soils in successional stands were
likely plowed, and forests were mostly even-
aged (Shaw and Patterson 2006). In MABI we
stratified by Natural and Plantation stand types.
Natural stands were second growth forests that
were primarily composed of naturally regenerat-
ed hardwood species. Plantations consisted of
forests that were planted with conifer species,
and had been managed more intensively for
timber by the park. In Saratoga National Histor-
ical Park (SARA), we stratified forest plots based
on land use history. The Field category repre-
sented areas that were open field in 1927 when
the park was established; the soils in these areas
were likely plowed and some soil amendment
(e.g., manure, liming) may have occurred. The
Forest category included sites that were forest or
woodlot in 1927 and have been continuously
forested since 1927.

RESULTS

Average percent cover
Minimum detectable percent change at 80%

power and alpha ¼ 0.10 ranged from 5% to 10%
for all species groups and across two, three, and
four survey cycles in NETN and ACAD (Fig. 3).
These results suggested more than adequate

sample sizes to detect network-wide changes in
average percent cover of important plant groups,
as well as changes occurring only in ACAD.
Minimum detectable percent change was also
10% or better for NETN and ACAD at the alpha
¼ 0.05 level, but remaining parks were more
likely to meet the 40% trend detection target at
alpha ¼ 0.10 (Figs. 3 and 4). Average percent
cover of deer-preferred species performed well
for all parks, with all parks meeting the target of
detecting 40% change over three cycles at 80%
power and alpha ¼ 0.10. Trends in average
percent cover of deer-avoided species were also
detectable at 80% power and alpha ¼ 0.10, but
minimum detectable percent change tended to be
5–10% higher than for deer-preferred species,
and WEFA did not meet the trend detection
target. Trend detection in fern and graminoid
cover was consistently better than for native
herbaceous and invasive cover (Fig. 3).

While most parks met the 40% change target
for each plant group at 80% power and alpha ¼
0.10, exceptions were invasive cover in Minute
Man National Historical Park (MIMA) and
MORR, deer-avoided species in WEFA, and
native herb cover in SARA. Poor trend detection
of invasive cover in MIMA and MORR was likely
the result of high variability of invasive cover in
both parks, and small sample size may have been
an issue in MIMA (Table 4, Fig. 5). In MORR,
invasive cover was significantly higher in suc-
cessional forests compared with mature stands
(Miller et al. 2012). Post-stratifying invasive cover
in MORR by successional stage improved trend
detection for the mature group, but not for the
successional group, which failed to detect even a
50% change over four cycles (Fig. 6). Native herb
cover in SARA followed a similar pattern as
MIMA and MORR with invasive cover (Fig. 5).
Post-stratifying SARA by land use history im-
proved trend detection for the forest group, but
both the field and forest groups failed to meet the
trend detection target (Fig. 6).

Small sample size and high metric variability
were likely the reasons for the inability to detect
the target level of change in cover of deer-
avoided species in WEFA (Fig. 3). At the time this
power analysis was initiated, only five plots of
data were available for the simulation, which
was a fairly small pool for the bootstrap to pull
from. After running the simulation with 10 plots
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of data (i.e., both panels), WEFA’s results
improved by 10% or more and met the trend
detection target (Fig. 6).

Quadrat frequency
Minimum detectable percent change ranged

from 5% to 15% at 80% power and alpha ¼ 0.10
for all species groups in NETN and ACAD,
suggesting more than adequate sample sizes to
detect changes in quadrat percent frequency of
important plant groups in ACAD and NETN
(Fig. 7). In contrast, every plant group failed to
meet the target of detecting a 40% change at 80%
power and alpha ¼ 0.10 in at least one park,
suggesting that average percent cover was a
better approach for analyzing changes in under-

story composition.

Species richness
The native species richness metric performed

well for NETN overall and all parks; we were
able to detect small (5–10%) changes in native
species diversity at both alpha levels, across two
to four survey cycles, while maintaining 80%
power (Figs. 8 and 9). In contrast, trend detection
for invasive species richness varied across parks,
and several parks did not meet the target of
detecting a 40% change at alpha ¼ 0.10 (Fig. 8).
Trend detection was greatest in MIMA, MORR,
Roosevelt-Vanderbilt National Historic Sites
(ROVA), and SARA, where invasive species were
relatively widespread (Fig. 10). Trend detection

Fig. 3. Results of power simulations on average percent cover by plant group and for each park using alpha¼
0.10. For each park, results are displayed for the minimum detectable percent decline and increase in effect size

across 2, 3 and 4 survey cycles. The gray box in the center of each plot represents the power target of the

monitoring program (80% power to detect a 40% change after three cycles of data collection), and parks inside the

box have met the target.

v www.esajournals.org 10 September 2014 v Volume 5(9) v Article 110

MILLER AND MITCHELL



of invasive richness improved in most parks
between two and four cycles. This pattern was
particularly pronounced in MORR, where the
minimum detectable percent increase improved
by 15% between two and four cycles. Parks that
were relatively uninvaded (i.e., ACAD, MABI
and Saint-Gaudens National Historic Site [SA-
GA]), and which have a high proportion of 0’s in
the NETN dataset, lacked power to detect even a
50% change in invasive species richness (Table 5).
A 50% increase in invasive richness in these
parks, which averaged less than 1 invasive
species per plot, was still a small value, and not
of great concern. Poor trend detection with
invasive richness in WEFA was more of a
concern, as it was the result of small sample
size, high metric variability and also potentially
due to high between cycle variability, which was
treated as sampling variation in the simulation

(Table 5).

CWD volume
Minimum detectable percent change of CWD

volume at 80% power and alpha ¼ 0.10 varied
across network parks (Fig. 8). NETN and ACAD
were able to detect changes of 610%, and
MORR, ROVA, SAGA and SARA met the 40%
detection target over three survey cycles. In
contrast, MABI, MIMA and WEFA did not reach
the 40% target. The low power in MIMA and
WEFA can be explained by a combination of low
sample size, high standard deviation relative to
the mean value, and many plots with no CWD
(Table 5, Fig. 10). The poor trend detection in
MABI was primarily due to low sample size and
high metric variability, including a higher be-
tween cycle variability than other parks with
fewer than 30 simulated plots. Post-stratifying

Fig. 4. Results of power simulations on average percent cover by plant group and for each park using alpha¼
0.05. See Fig. 3 caption for additional details.
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MABI by forest type improved trend detection
for plantations, but weakened trend detection for
natural stands (Fig. 6). In this case, results for
WEFA did not improve after running the
simulation on 10 plots (i.e., both panels), and
WEFA did not meet the trend detection target
(Fig. 6).

Snag abundance
We were able to detect a 40% or smaller change

in snag abundance at 80% power and alpha ¼
0.10 over three survey cycles in only half of the
parks in NETN (Fig. 8). MABI, MIMA, MORR
and WEFAwere the parks that missed this target
(Fig. 8). At alpha ¼ 0.05, ROVA also missed the
trend detection target (Fig. 9). MABI, MIMA,
MORR, and WEFA had fewer than 30 simulated
plots, had relatively high standard deviations in
relation to the low mean value for this metric,
and had a high proportion of plots with 0 values
(Table 5). This resulted in low power both
because the magnitude of a 40% change was
relatively small, and because the high standard
deviation meant that a large change had to occur
to be significant. SAGA, in contrast, had a similar
number of simulated plots, but a higher mean
snag abundance and power for this park was
much higher.

We reran the simulations with 10 plots of
actual data for WEFA and post-stratified MABI
and MORR by land use history. Post-stratifying
MABI by natural stands and plantations resulted
in slightly improved power, but only for natural
stands (Fig. 6). In MORR, trend detection was
actually worse for the mature group than for the
full collection of plots, and did not improve for
the successional group (Fig. 6). Despite doubling
the number of plots of data used by the
bootstrap, power also remained poor for WEFA
(Fig. 6).

Tree regeneration
At 80% power and alpha ¼ 0.10, we failed to

detect a 40% change over three survey cycles (12
years), for all three regeneration metrics (stocking
index, seedling density, and sapling density) at
MABI, MIMA, SAGA, and SARA (Fig. 8). In
MORR, we failed to meet the 40% change target
for seedling density. Parks with poor trend
detection in the regeneration metrics often had
low simulated sample size, a relatively high

Table 4. Table of summary statistics for average percent

cover by plant group collected in the first survey

cycle in each park. Mean is the average value,

including 0. SD is the standard deviation of the

metric by park for cycle 1. The % zeros column

represents the proportion of plots in the dataset

where the metric value is 0 for each park. SDBC is the

standard deviation of metric differences between

cycles.

Park Mean % SD % zeros SDBC

Native herbs
ACAD 3.00 4.66 11.39 3.08
MABI 9.44 12.57 8.33 2.83
MIMA 8.17 9.95 0.00 6.14
MORR 9.15 13.92 0.00 3.61
ROVA 10.50 11.01 5.00 6.16
SAGA 3.83 4.98 0.00 2.69
SARA 28.58 15.09 0.00 12.64
WEFA 10.26 6.91 0.00 2.85

Graminoids
ACAD 0.58 2.04 51.90 1.96
MABI 0.63 1.05 8.33 1.09
MIMA 0.90 1.54 30.00 3.15
MORR 10.71 13.22 0.00 11.02
ROVA 1.72 4.73 40.00 1.97
SAGA 0.14 0.33 70.00 0.76
SARA 7.43 9.05 6.67 12.54
WEFA 2.91 3.25 0.00 1.43

Ferns
ACAD 1.92 3.78 54.43 3.07
MABI 7.53 10.70 16.67 3.67
MIMA 2.60 3.98 40.00 3.40
MORR 1.24 3.78 64.29 0.29
ROVA 3.47 9.54 40.00 5.25
SAGA 3.19 4.98 0.00 2.76
SARA 13.46 15.30 6.67 10.04
WEFA 6.09 5.86 20.00 2.79

Invasives
ACAD ,0.01 ,0.01 89.87 ,0.01
MABI 0.04 0.13 91.67 0.13
MIMA 6.10 6.68 0.00 8.10
MORR 24.30 30.17 14.29 9.92
ROVA 4.70 7.54 20.00 5.06
SAGA 1.35 4.25 90.00 2.77
SARA 3.34 4.10 6.67 8.39
WEFA 0.09 0.12 40.00 0.19

Deer-avoided species
ACAD 0.22 1.01 73.42 2.01
MABI 1.43 2.83 8.33 3.08
MIMA 0.22 0.35 50.00 1.47
MORR 4.81 7.75 7.14 6.08
ROVA 3.34 6.79 45.00 5.01
SAGA 1.38 3.55 30.00 3.77
SARA 2.57 3.34 0.00 12.43
WEFA 8.46 7.21 0.00 3.86

Deer-preferred species
ACAD 0.04 0.19 91.14 0.15
MABI 0.15 0.32 66.67 0.35
MIMA ,0.01 ,0.01 90.00 ,0.01
MORR 0.08 0.18 64.29 0.22
ROVA 1.78 3.58 20.00 1.21
SAGA 0.04 0.08 50.00 0.10
SARA ,0.01 ,0.01 86.67 ,0.01
WEFA 0.19 0.42 60.00 0.42
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standard deviation relative to the mean value, a
high proportion of 0 values, and high between
cycle variability (Table 5, Fig. 10). SAGA also had
consistently high variability across the three
regeneration metrics, and also had one of the
smaller simulated sample sizes (n ¼ 20). ACAD
and ROVA met the 40% detection target for all
three regeneration metrics at both alpha levels
and across two, three, and four survey cycles. At
alpha ¼ 0.10, WEFA also met the 40% detection
target for all three regeneration metrics. WEFA
was the exception to the poor trend detection in
parks with low simulated sample sizes. For
stocking index, WEFA had a relatively low
standard deviation relative to the mean metric
value and a fairly high mean value. For the other
two regeneration metrics, WEFA had low be-
tween cycle variability when compared to the
parks with low power.

Post-stratifying MABI, MORR and SARA by

land use history resulted in slight improvements
in trend detection, but often for only one of the
two groups per park (Fig. 11). In MABI, the
minimum detectable percent change improved
slightly in natural stands for both the stocking
index and seedling density, but MABI still did
not meet the trend detection target. Trend
detection in MORR was worse for both groups,
compared with the full collection of plots (Fig.
11). In SARA, the minimum detectable percent
change in seedling density greatly improved for
the forest group, but trend detection remained
poor for the field group and the stocking index
overall.

Live tree basal area
The live tree basal area metric performed very

well, with all parks detecting changes at or below
25% while maintaining 80% power at both alpha
levels, and across two, three, and four survey

Fig. 5. Boxplots of average percent cover data from the first survey cycle by guild for each park.
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cycles (Figs. 8 and 9). This suggested that even
small changes in live tree basal area will likely be

detected in all NETN parks, making this a
reliable metric for examining patterns in forest
stand dynamics.

DISCUSSION

Power analyses indicated that, for most key

forest metrics, our monitoring program met the
target goal of detecting a 40% change in a metric
over three survey cycles with 80% power and
alpha ¼ 0.10. In general, we also were able to
detect trends using the standard 0.05 alpha level.

However, there were a number of cases where a
park missed the 40% target with alpha ¼ 0.05,
and met the target with alpha ¼ 0.10, and
minimum detectable percent change also tended

to be better with the higher alpha level. We think
that for many of the key forest metrics having a
relatively high probability of falsely detecting a
trend (i.e., 10% rather than 5%) is warranted
given the risk of missing an important ecological
change. Therefore, we believe the results from
this power analysis justify using a default Type I
error rate of 0.10 for future trend analyses.

The power to detect trends was very good for
NETN overall and ACAD, with a minimum
detectable change of 6 10% or better for nearly
every metric at both alpha levels. This was
expected, as ACAD had the highest number of
forest plots (n ¼ 176) in the network, and the
NETN-wide dataset was based on a sample size
of 350 plots. ROVA had the second highest
sample size (n ¼ 40 plots) in NETN, and all but
a few percent frequency metrics met the trend

Fig. 6. Results of power simulations on metrics that were post-stratified within a park. Succ., successional. See

Fig. 3 caption for additional details.
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detection target at alpha ¼ 0.10 in ROVA. The
power for remaining parks (with 32 or fewer
plots) varied, and metrics containing a high
proportion of zeros and low park-specific mean
values were the most common cause for poor
change detection (e.g., invasive species richness
in ACAD, MABI and SAGA; CWD Volume in
MIMA and WEFA; and snag abundance in
MIMA, MORR and WEFA). Poor trend detection
in this case is not a big concern, because a 40%
change in a metric with low values is generally
not biologically meaningful.

In contrast, several cases of poor change
detection were the result of high metric variabil-
ity within the initial plot data or between
sampling cycles (e.g., average percent cover of
invasive species in MIMA and MORR, average
percent cover of native herbs in SARA, and CWD
volume in MABI). This is of greater concern,

because only large changes in a metric can be
detected, even if metric values are high to begin
with. These problems with poor detection could
be remediated by increasing the sample size. We
also recommend carefully reviewing the sam-
pling methods to determine whether improve-
ments could be made to lower sampling
variability. For example, spatial and temporal
CWD volume variability could be reduced by
using permanent markers to delineate the tran-
sects more clearly or by considering a different
method of tallying CWD (e.g., the point rela-
scope method; Brissette et al. 2003).

Metric variability can also be reduced by
stratifying the data into reasonable groups based
on factors like habitat type or land use and that
reduce the within-group variance as much as
possible. We tested whether post-stratifying
improved power for MABI, MORR and SARA,

Fig. 7. Results of power simulations on quadrat frequency by plant group and for each park using alpha¼ 0.10.

See Fig. 3 caption for additional details.
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and results varied. In most cases, post-stratifying
improved trend detection for one of the two
groups in a park, but only resulted in a group
meeting the trend detection target in two cases
(CWD volume in MABI and seedling density in
SARA). There were also several instances where
post-stratifying resulted in worse trend detection
for a group than with the full collection of plots.
These results indicated that post-stratification, at
least for the groups we tested, may not actually
improve trend detection. This is contrary to
Johnson et al. (2008), which suggested that
post-stratifying plots based on land use history,
forest type, or management unit may improve
power to detect change (Johnson et al. 2008). We
believe that post-stratification will only be
beneficial when the reduction in within-group
variability gained by stratification outweighs the

detrimental effects of a reduced sample size.
Trend detection in WEFA did not vary greatly

between simulations with a dataset containing
five plots of data, and a dataset with 10 plots. In
both datasets, WEFA did not meet the trend
detection target for CWD volume and snag
abundance. Trend detection did improve for
average cover of deer-avoided species. Despite
the lack of marked improvement in power, using
as large a sample as possible for the bootstrap is
recommended since a larger sample provides a
better approximation of the true population
distribution. If the data used are not a represen-
tative sample of the population, the bootstrap
simulation will be biased and will produce
inaccurate power estimates. Although we used
only five plots in the initial simulations for
WEFA, we recommend using at least 10 plots of

Fig. 8. Results of power simulations on key forest metrics for each park using alpha¼0.10. R stands for richness

in the Native R and Invasive R plots. CWD, coarse woody debris. See Fig. 3 caption for additional details.
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data per site, and perhaps more in the case of
highly variable metrics.

Trend detection results were consistently better
for average percent cover of plant guilds than
quadrat percent frequency. These results were
contrary to Johnson et al. (2008), where quadrat
frequency was favored over quadrat percent
cover for assessing trends in understory compo-
sition. The consistently poor performance of
quadrat frequency across all plant groups was
likely due to the small number of quadrats that
we sampled in each plot (n ¼ 8), versus the 30
quadrats sampled by the hybrid plot design
proposed by Johnson et al. Our power results for
quadrat frequency were also potentially affected
by our simulation approach, because the simula-
tion was unable to take the discrete nature of the
plot frequency data into account. Frequency data

were converted to proportions, and the simula-
tion generated continuous proportion data even
though true values were limited to 0, 0.125, 0.25,
and so on. The extent to which our simulation
approach biased the quadrat frequency results is
unclear and warrants additional investigation.
Nevertheless, the results from this analysis
suggested that our sampling effort was adequate
to detect important changes in understory
composition using percent cover. This is valuable
information, as the amount of time and level of
expertise required to identify species in each
quadrat is quite high, and adding more quadrats
to a plot would come at a considerable cost to
NETN.

While most parks met the 40% trend detection
target at 80% power and alpha ¼ 0.10 in every
plant group for average cover, some plant groups

Fig. 9. Results of power simulations on key forest metrics for each park using alpha¼0.05. R stands for richness

in the Native R and Invasive R plots. CWD, coarse woody debris. See Fig. 3 caption for additional details.
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had consistently better trend detection than
others. The fern and graminoid groups were
consistently strong metrics for trend detection,
and performed better than the native herbaceous
and invasive species group. Ferns and grami-
noids often respond favorably to moderate deer
browse impacts and/or earthworm invasions
while herbaceous species show a decline (De La
Cretaz and Kelty 2002, Wiegmann and Waller
2006). Therefore, changes in the understory may
be identified by a significant increase in fern or
graminoid cover before a decrease in native
herbaceous cover is detected. Invasive species
also tend to respond favorably to deer browse
and earthworm invasion, but results indicated
that changes in fern and graminoid cover may be
detected before change in invasive species cover.
The deer browse indicator groups also per-
formed well, and will be useful metrics to assess
impacts or recovery from deer overabundance.

The power to detect change in tree regenera-
tion varied considerably between parks and

metrics, and only NETN overall, ACAD, ROVA
and WEFA met the 40% trend detection target
over three cycles with alpha ¼ 0.10 and 80%
power. With the two largest sample sizes (176 for
ACAD, and 40 for ROVA) and relatively high
regeneration rates, the results in ACAD and
ROVA were to be expected. In contrast, WEFA
had the smallest sample size (10 plots), and it
was a bit surprising that the regeneration metrics
performed so well in this park. A fairly high
mean metric value and low standard deviation
relative the the mean (for the stocking index) and
relatively low spatial and between cycle variabil-
ity (for the other metrics; Table 5) were possibly
the reasons for good trend detection in WEFA.
MORR had extremely low rates of regeneration
due to high deer browse pressure (Shaw and
Patterson 2006), and for the two metrics where
the park met the trend detection target the park
had very low between cycle variability. Trend
detection was weaker across all three regenera-
tion metrics in the remaining parks with low

Fig. 10. Boxplots of metric data collected in the first survey cycle for each park.
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sample sizes and moderate regeneration abun-
dance and variability (MABI, MIMA, SAGA and
SARA).

Minimum detectable percent change tended to
be 5–10% better for the stocking index than
seedling and sapling density metrics. The stock-
ing index was developed and used by the U.S.
Forest Service to assess regeneration in PA forests
(McWilliams et al. 2002), and has been used by
multiple NPS Inventory and Monitoring Net-
works to assess condition of regeneration (Perles
et al. 2010, Comiskey and Wakamiya 2012, Miller
et al. 2012), and has been proposed as a metric for
parks undergoing deer management to assess
regeneration response (National Park Service
2008, National Park Service 2009, National Park
Service 2011). Results from this analysis suggest-
ed that the stocking index is a decent metric for
assessing change in regeneration abundance in
parks with low rates of regeneration (e.g., parks
with high deer browse pressure). For parks with
moderate regeneration abundance and variabili-
ty, current metrics may not be sufficient for
detecting trends in regeneration. Post-stratifying
improved power in a few cases, but we may need
to explore other metrics to track regeneration in
these parks.

The results from this analysis are informative
beyond NETN, as there are a number of federal
and state agencies that are implementing or
developing forest monitoring programs in the
eastern U.S. This includes five other NPS I&M
networks that are implementing similar protocols
in over 50 park units from Minnesota to Virginia.
The I&M forest monitoring protocols are adapted
from the U.S. Forest Service’s Forest Inventory

Table 5. Table of summary statistics for each metric by

park and collected in the first survey cycle. Mean is

the average value, including 0. SD is the standard

deviation of the metric by park for cycle 1. The %

zeros column represents the proportion percent of

plots in the dataset where the metric value is 0 for

each park. SDBC is the standard deviation of metric

differences between cycles of the actual data.

Park Mean SD % zeros SDBC

Native richness
ACAD 16.66 5.73 0.00 2.93
MABI 27.42 8.63 0.00 4.37
MIMA 24.80 7.51 0.00 5.69
MORR 29.57 7.82 0.00 4.63
ROVA 37.05 14.53 0.00 5.90
SAGA 28.60 9.61 0.00 2.11
SARA 44.80 6.88 0.00 8.86
WEFA 34.60 7.23 0.00 9.04

Invasive richness
ACAD 0.06 0.25 93.67 0.28
MABI 0.58 0.67 50.00 0.75
MIMA 4.20 2.30 0.00 1.17
MORR 5.36 3.99 0.00 1.54
ROVA 3.05 1.90 5.00 1.63
SAGA 0.30 0.67 80.00 0.71
SARA 3.00 0.65 0.00 0.59
WEFA 2.40 1.34 0.00 1.52

Live tree basal area (m2/ha)
ACAD 26.06 12.27 0.00 5.04
MABI 39.68 16.47 0.00 6.35
MIMA 37.92 15.36 0.00 5.94
MORR 28.70 10.71 0.00 3.18
ROVA 28.36 14.18 0.00 3.36
SAGA 52.36 15.92 0.00 10.16
SARA 22.54 16.57 0.00 4.71
WEFA 30.34 4.61 0.00 1.56

Stocking index
ACAD 177.18 258.83 10.12 145.92
MABI 10.86 22.07 41.67 38.63
MIMA 24.17 44.33 20.00 55.80
MORR 25.81 29.47 28.57 16.58
ROVA 154.07 132.71 0.00 94.81
SAGA 92.22 94.32 11.11 47.49
SARA 22.29 25.78 33.33 35.60
WEFA 81.47 66.92 20.00 45.65

Seedling density (stems/ha)
ACAD 4291.09 5181.34 17.72 3559.31
MABI 4378.98 5746.34 33.33 5018.28
MIMA 1751.59 2337.87 30.00 2792.03
MORR 1194.27 1787.14 42.86 1088.10
ROVA 6064.23 7183.57 5.00 6883.22
SAGA 2742.39 2761.23 22.22 1558.83
SARA 3980.89 7630.74 26.67 3988.05
WEFA 902.34 1399.30 60.00 581.45

Sapling density (stems/ha)
ACAD 6016.69 7538.70 24.68 5810.81
MABI 796.18 1592.36 75.00 1391.16
MIMA 2786.62 5506.50 70.00 4016.71
MORR 587.66 730.00 50.00 479.67
ROVA 4325.90 5230.54 5.00 3875.17
SAGA 4954.00 4587.15 33.33 3019.47
SARA 2547.77 4257.88 53.33 4414.59
WEFA 2547.77 2690.83 20.00 2333.34

CWD volume (m3/ha)
ACAD 17.27 21.25 24.05 14.07
MABI 26.19 28.94 16.67 17.91
MIMA 10.77 11.20 30.00 5.59

Table 5. Continued.

Park Mean SD % zeros SDBC

MORR 25.86 32.78 7.14 15.52
ROVA 60.37 61.21 5.00 36.07
SAGA 17.58 16.75 30.00 11.78
SARA 27.65 28.94 33.33 20.18
WEFA 22.98 47.51 60.00 5.93

Snag abundance (stems/ha)
ACAD 175.53 169.45 13.92 76.21
MABI 45.83 54.18 41.67 27.09
MIMA 42.50 33.44 10.00 44.41
MORR 33.93 27.05 21.43 30.57
ROVA 53.75 61.38 20.00 30.86
SAGA 117.50 99.34 10.00 48.88
SARA 103.33 100.39 6.67 66.46
WEFA 25.00 30.62 40.00 41.83
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and Analysis Program, which covers the entire
U.S., and includes timber surveys dating back to
the 1930s. Multiple state agencies in our region
also have forest monitoring programs, including
the Maine Natural Areas Program in Maine
(Cutko 2005), and a forest monitoring coopera-
tive in Vermont (Vermont Monitoring Coopera-
tive 2009).

The power analysis simulation we developed
represents one of the few tools available that
assesses the power to detect change over time
using mixed effects models, and that appropri-
ately models datasets that are organized as
random plots within multiple sites, with repeat-
ed measures at fixed intervals and unequal
variance among sites. The analyses we presented
here applied effect size as a percent change
across all cycles (e.g., a 40% change between

three cycles was a 13.3% change in each cycle).
However we included the option in our simula-
tion tool to treat the change as ‘‘per cycle’’ (e.g.,
always a 40% change). A 40% change per cycle
will likely result in much higher power and
marked improvement in power over time, but
testing this is beyond the scope of this study. The
simulation assumes that the differences in metric
measurements between plot visits and within
each site are normally distributed, but alternative
distributions can easily be used (e.g., the glmer
function in lme4) and the simulation otherwise
makes no assumptions beyond those required by
the mixed effects model. Commonly used power
analysis tools, such as MONITOR and TRENDS,
are based on least-squares regression or analysis
of variance, and therefore assume equal varianc-
es and independence (Gerrodette 1993, Hatch

Fig. 11. Results of power simulations on regeneration metrics that were post-stratified within a park. Succ.,

successional. See Fig. 3 caption for additional details.
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2003, Gray and Burlew 2007, Gibbs and Ene
2010). While these programs are valuable and
easy to use, the results have limited application
when datasets violate the underlying assump-
tions. By incorporating fixed (e.g., site and time)
and random (plot) factors, the mixed effects
model appropriately handles repeated measure-
ments (Wang and Goonewardene 2004, Zuur et
al. 2009). Our approach also uses the varIdent
function in the mixed effects model, which
allows each group (e.g., park) to have its own
variance structure. Finally, we designed the
simulation in R to require a minimal amount of
user input to run (e.g., dataset file name, metric
name, number of cycles, number of simulations
to run, and transformation type), and to be
applicable to a range of data types (e.g.,
proportional and count data), for any number
of sampling areas (e.g., parks) and sampling
units (e.g., plots), and a range of repeated, fixed-
interval surveys.

CONCLUSION

The results from our power analysis indicate
that for most key forest metrics, our monitoring
program meets our target goal of detecting a 40%
change in a metric over three survey cycles with
80% power and alpha ¼ 0.10. These results
suggest that our sampling methods are sound,
and there are only a few areas that require
improvement. After examining the causes of
poor trend detection, we identified which metrics
had low power due to a high proportion of zeros
and low park-specific mean values, and which
metrics had low power due to high metric
variability. High metric variability is of most
concern to us, because only large changes in a
metric can be detected, even if metric values are
high to begin with. We will attempt to improve
power for metrics with high variability by
augmenting our sample design with other
existing data sources in our parks, such as
incorporating similar data collected in more than
150 silvicultural inventory plots in MABI. We are
also carefully reviewing the sampling methods,
such as for CWD, to determine whether im-
provements could be made to lower sampling
variability. We will evaluate potential modifica-
tions to our monitoring protocol or new metric
calculations using this simulation tool to ensure

any changes will improve power over original
methods. We also plan to run similar power
analyses for many of our other long-term
monitoring protocols (e.g., breeding landbirds
and freshwater wetlands) to ensure that our
methods are effective for detecting long-term
changes over time, and we encourage other
monitoring programs to do the same.
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SUPPLEMENTAL MATERIAL

SUPPLEMENT

R scripts and an example dataset for conducting the power analysis simulations (Ecological Archives
C005-009-S1).
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