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Abstract. Structural equation modeling (SEM) is increasingly being chosen by researchers as a

framework for gaining scientific insights from the quantitative analyses of data. New ideas and methods

emerging from the study of causality, influences from the field of graphical modeling, and advances in

statistics are expanding the rigor, capability, and even purpose of SEM. Guidelines for implementing the

expanded capabilities of SEM are currently lacking. In this paper we describe new developments in SEM

that we believe constitute a third-generation of the methodology. Most characteristic of this new approach

is the generalization of the structural equation model as a causal graph. In this generalization, analyses are

based on graph theoretic principles rather than analyses of matrices. Also, new devices such as metamodels

and causal diagrams, as well as an increased emphasis on queries and probabilistic reasoning, are now

included. Estimation under a graph theory framework permits the use of Bayesian or likelihood methods.

The guidelines presented start from a declaration of the goals of the analysis. We then discuss how theory

frames the modeling process, requirements for causal interpretation, model specification choices, selection

of estimation method, model evaluation options, and use of queries, both to summarize retrospective

results and for prospective analyses.

The illustrative example presented involves monitoring data from wetlands on Mount Desert Island,

home of Acadia National Park. Our presentation walks through the decision process involved in

developing and evaluating models, as well as drawing inferences from the resulting prediction equations.

In addition to evaluating hypotheses about the connections between human activities and biotic responses,

we illustrate how the structural equation (SE) model can be queried to understand how interventions

might take advantage of an environmental threshold to limit Typha invasions.

The guidelines presented provide for an updated definition of the SEM process that subsumes the

historical matrix approach under a graph-theory implementation. The implementation is also designed to

permit complex specifications and to be compatible with various estimation methods. Finally, they are

meant to foster the use of probabilistic reasoning in both retrospective and prospective considerations of

the quantitative implications of the results.
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INTRODUCTION

Structural equation modeling (when terms de-
fined in the glossary in Box 1 are used for the first
time, they are italicized) is a methodology
increasingly used by those in the natural sciences
to address questions about complex systems
(Shipley 2000a, Grace 2006). It has several
distinctive characteristics. First, since its origin
(Wright 1920, 1921) its emphasis has been on
providing a framework for learning about causal
processes. Inferring cause-effect relationships has
particular requirements that go beyond tradi-
tional statistics (Pearl 2009) and as a result
structural equation modeling (SEM) characteris-
tically involves a sequence of steps designed to
support such inferences. Second, SEM is best
understood as a framework for quantitative
analysis that uses statistical techniques rather
than a statistical method itself. A great variety of
statistical techniques and tools have been used in
the process of specifying and evaluating SE
models and users of this methodology have been
quick to incorporate new statistical techniques as
they become available. Third, SEM permits the
evaluation of networks of direct and indirect
effects. As Wright noted and Pearl has reempha-
sized, network models are a natural device for
considering causal relations. Many of the limita-
tions of traditional statistical models can be
understood by recognizing their inflexible archi-
tecture and inability to represent networks of
causal relations (discussed in Grace 2006).
Fourth, SEM incorporates both graphical and
mathematical representations. Understanding
causal relations is inherently difficult without
the utilization of graphical models. The use of
graphical modeling methods for the analysis of
multivariate data permits the explicit expression
of causal hypotheses. As a result of all these
features, we feel that SEM has a unique and
important role to play in quantitative science.

From a historical perspective, the first gener-
ation of SEM dates back to the early work by

Sewall Wright (1920, 1921), who simultaneously
invented path analysis and graphical modeling in
pursuit of causal analysis of biological systems.
This early work spread to econometrics (Haavel-
mo 1943) and the social sciences (Blalock 1964),
laying the ground work for the emergence of the
methodology that came to be known as structur-
al equation modeling. The early implementation
of this methodology was limited to the analysis
of correlation matrices. The second generation of
SEM was born with Jöreskog’s (1973) synthesis of
factor and path relations under the LISREL
model. Through the comparison between mod-
el-implied and observed covariance matrices and
maximum likelihood methods, this synthesis
launched a tremendous growth of applications,
involving both latent and observed variables,
continuing to the present (e.g., the journal
Structural Equation Modeling).

Aside from Wright’s own studies, the use of
SEM in the natural sciences was uncommon until
the 1990s, when illustrations of its potential utility
for ecology and evolutionary biology were pub-
lished (e.g., Mitchell 1992, Wootton 1992, Brown
and Weis 1995, Shipley 1995, Pugesek and Tomer
1996, Grace and Pugesek 1997). There has been a
notable expansion in the number and variety of
applications of SEM in the natural sciences in
recent years. SEM studies of trophic interactions
(e.g., Gotelli and Ellison 2006, Lau et al. 2008,
Riginos and Grace 2008, Laliberte and Tylianakis
2010, Beguin et al. 2011, Prugh and Brashares
2012), plant communities (e.g., Weiher 2003,
Seabloom et al. 2006, Laughlin 2011, Reich et al.
2012), microbial communities (e.g., Bowker et al.
2010), animal populations (e.g., Janssen et al. 2011,
Gimenez et al. 2012), animal communities, (e.g.,
Anderson et al. 2011, Belovsky et al. 2011, Forister
et al. 2011), ecosystem processes (e.g., Keeley et al.
2008, Jonsson andWardle 2010, Riseng et al. 2010),
evolutionary processes (e.g., Scheiner et al. 2000,
Vile et al. 2006), and macroecological relations
(Carnicer et al. 2008) have been conducted. While
SEM has been most commonly applied in obser-
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Box 1

Glossary of terms used in paper.
Bayesian reasoning—The use of Bayes theorem to consider within a network how knowing the

states of certain variables influences our inferences about other variables.
causal diagram—A representation of the nodes (variables) and their connections (links) that are

hypothesized to exist for a situation being modeled. The three distinctive properties of causal
diagrams that distinguish them from other representations (such as metamodels and SE
models) are (1) they may include nodes regardless of whether those nodes will be represented
in any given SE model in order to aid logical analysis, (2) nodes included may be observed or
hidden (latent), and (3) the functional forms for the linkages are not specified. Causal
diagrams are representations designed to support causal analysis. The causal diagram is
intended to permit the reading of (a) logical and testable implications, (b) identifiable
parameters, (c) recognition of instrumental variables, (d) recognition of equivalent models,
and (e) recognition of minimum admissible sets for determining causal effects. For further
explanation refer to (Pearl 2012).

causal indicator—In SEM observed values of measurements are assumed to be indicators for a
underlying process. Causal indicators are those that cause or contribute to the make up of the
theoretical entity. In this case, the arrows representing the direction of causality point from the
observed indicator to the theoretical variable (e.g., a composite variable). Causal indicators
contrast with the more traditional effect indicators, which represent the effects of a latent entity.
Causal arrows point from a latent variable to its effect indicators.

causal model—A model is causal if it makes a causal claim and if key assumptions can be
supported. Fundamentally, causal claims, e.g., that X!Y (X affects Y ) require manipulations
for confirmation. So, if we can alter X without simultaneously altering other causes of Y that
are related to X, and then observe that Y responds consistently, we have evidence to support a
causal claim. While this assumption may go untested in many causal studies, the results from
causal modeling can be understood to be explicit predictions that may be testable under
future circumstances. Often, scientists will accept, based on collective prior knowledge, that
certain statistical associations are very likely causal. That does not mean that they are
completely understood or simple.

conditional independence—Two variables in a model can be declared to be conditionally
independent if any bivariate association between them can be explained indirectly. Variables
that are conditionally independent in a model are typically not connected by a directed or
undirected direct linkage.

d-separation—The d-separation criterion for any pair of variables in a graph involves (1)
controlling for common ancestors (variables that are causal antecedents) that could generate
correlations between the pair, (2) controlling for causal connections through multi-link
directed pathways, and (3) not controlling for common descendent variables. Collectively,
these three rules combine to provide the guidance needed to identify the expectations implied
by a graph. Practically speaking, the goal of d-separation is to identify cases where we need to
test for a correlation between the residuals of two variables not connected by a direct path to
ensure a model is consistent with the data.

effect indicator—When indicator variables represent the effects or manifestations of a latent entity
they are considered to be effect indicators. Contrast with causal indicators.

endogenous variable—Avariable that is predicted by another variable in a model, and therefore is
a response variable.

equivalent models—Models that have idential statistical expectations but different causal
assumptions.
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Box 1. Continued.

exogenous variable—A variable whose variations are not explained in a model.
global estimation—In classical SEM, estimation involves comparing the entire covariance matrix to

the covariances implied in thewholemodel. This approach is also referred to as a ‘‘full-information’’
method. Global estimation is in contrast to local estimation, in which solutions are determined for
each node based on each node’s parent variables, plus any directly correlated variables.

graphical models—A graph is basically a network made up of nodes and linkages. In the most
basic case, a node is represented using a random variable and linkages represent conditional
probabilities in some functional form (e.g., Gaussian responses with a linear link).

graphical modeling—A field of quantitative analysis that has greatly expanded in the past two
decades. Graphical modeling is often thought of depending on a merger between graph
theory and probability theory.

instrumental variables—For a pair of variables (X, Y ), an instrumental variable Z is one that is
correlated with the predictor of interest X, but free from any source of correlation with the
predicted errors for Y. Instrumental variables are used in causal analysis to obtain unbiased
estimations of effects.

interventions—An intervention is a direct manipulation of the values of an entity. Experimental
studies are one example of an intervention. The concept of intervention also extends to the
topic of prediction when an intervention is not part of a randomized replicated experiment,
but when its outcome is predicted.

latent variables—Hypothesized variables for which we have no direct measurements, but whose
existence may be revealed by associations among measured variables.

local estimation—In graph-theoretic SEM, instead of estimation being accomplished by
comparing the entire covariance matrix to the covariances implied in the whole model (i.e.,
global estimation), estimation is local, at the level of each response variable and its parents and
direct correlates. This is sometimes referred to as a ‘‘limited-information’’ method.

mediation—A key feature of SEM is the test of mediation, which relates directly to the study of
causal relationships using path relations. In the test of mediation, we ask whether the effect of
one entity (X ) on another (Y ) can be explained by a third variable (Z ), e.g., if X!Z!Y holds
true (and if it does, then X and Y are conditionally independent given Z ).

metamodel—A metamodel is a generalization of the modeling problem that is noncommital as to
measurement, either with regards to the variables that will be included in the model or the
functional forms of the relationships between variables. The purpose of the metamodel is to
make explicit the relation between theoretical entities or constructs and the measurements
that will be used to represent them. When used in SEM, the metamodel is sometimes referred
to as the structural equation metamodel (SEMM).

network model—A general term that refers to models that can be envisioned as a collection of
nodes connected by links, where all possible linkages are permissible (at least theoretically).
SE models are one type of network model. Other terms one may encounter include Bayesian
networks, probabilistic networks, causal networks, interaction networks, and neural
networks. There are various degrees of overlap among some of these terms and to some
extent their meaning is partially conveyed by their history of use. Since all of these listed types
of networks exist only as quantitative relationships among variables, they can all be thought
of as ‘‘models’’ as opposed to physical entities, such as traffic networks that are made up of
roadways for vehicles.
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vational studies, there have been numerous
applications involving experimental manipula-
tions (e.g., Gough and Grace 1999, Tonsor and
Scheiner 2007, Lamb andCahill 2008, Youngblood
et al. 2009). To date, relatively few studies have
applied Bayesian methods to ecological applica-
tions of SEM (e.g., Arhonditsis et al. 2006, Grace et
al. 2011, Gimenez et al. 2012).

While interest in applying SEM has been
increasing in the natural sciences, both the
scientific and statistical ambitions of SEM prac-
titioners have also been growing. An interesting

and important source of new thought about SEM
has been coming from the field of artificial
intelligence. Pearl (2009) has suggested that the
development of intelligent systems requires
explicit consideration of causality and that
structural equations are the natural language
for representing and studying causal relations.
He has further developed a coherent theory for
explicating the requirements for causal reasoning
under uncertainty. His approach has generalized
SEM to the nonparametric level and he has
systematically applied a graph-theoretic ap-

Box 1. Continued.

path analysis—A term often used to refer to structural equation models that only contain
observed variables (omitting latent variables). Generally, the phrase structural equation
model, even if only observed variables are included, implies a more modern treatment of
assumptions, while the term path analysis is more ambiguous in this regard unless one makes
it clear that they are performing path analysis using SEM techniques.

prospective analyses—A forward-looking computation that considers what might happen under
future conditions. Contrast with retrospective analyses.

query—A specific request for a quantity or set of quantities to be computed using the prediction
equations of an SE model.

retrospective analyses—A backward-looking computation that considers how past or present
circumstances may have led to current conditions. Contrast with prospective analyses.

statistical model—One that represents probabilistic associations without explicit consideration of
whether the parameters derived can be justifiably interpreted as causal effects.

statistical specification—When we refer to the statistical specification of a model, we mean the
explicit statement of all the information needed to permit estimation, such as variable and
error distributions and linkage functions. Causal diagrams, in contrast, omit statistical details
in order to focus on causal relations among variables.

structural equation modeling (SEM)—The process of developing and evaluating structural
equation models.

structural equation models (SE models)—Probabilistic models containing or specifying multiple
causal pathways. SE models are characterized by (a) attempting to satisfy the criteria for
drawing causal inferences and (b) permitting endogenous variables to be functions of other
endogenous variables, thereby potentially containing indirect effects.

structural model—The basic meaning of a structural model refers back to the original concept
from econometrics that an equation that can be supported as representing a causal
relationship is described as ‘‘structural’’ (Haavelmo 1995). Essentially, a causal probabilistic
model is a structural model and structural equation models aspire to be fully structural (all
coefficients can be given causal interpretations), though this is not always true in practice (i.e,
some relationships in SE models may only represent probabilistic associations).

untestable assumptions—Assumptions in a causal diagram or model that cannot be tested with
observational data. For example, for a pair of variables (X, Y ), we may make the assumption
that the direction of causation is X!Y. Such an assumption is testable if we are able to
manipulate X while holding constant other variables affecting Y that are correlated with X.

v www.esajournals.org 5 August 2012 v Volume 3(8) v Article 73

SYNTHESIS & INTEGRATION GRACE ET AL.



proach to causal analysis. He has also proposed
new mathematical operators to support the
extraction of causal interpretations from data
and has synthesized these ideas into a suggested
set of requirements for SEM to serve as an
inference engine, with defined input require-
ments (Pearl 2012). Many of these ideas have yet
to be incorporated into general SEM practice,
though a few have (Shipley 2000b, 2003, 2009).

Another set of new possibilities for SEM has
emerged from recent developments in Bayesian
statistics. Historically, the second generation of
SEM put forward by Jöreskog (1973) has been
framed in terms of likelihood statistics; thus,
there is a natural linkage to Bayesian estimation
since Bayesian estimates are simply the likeli-
hoods weighted by the prior probabilities.
Adopting a Bayesian approach provides for three
main opportunities. First it opens up the infer-
ence process to include a wider array of
information sources through the priors. While it
may be arguable how useful prior information
will be for judging inferences for a set of data,
prior information can be very useful when the
goal is to forecast future observations. Second, it
opens up the range of statistical specifications
that can be estimated because of the flexibility of
Markov chain Monte Carlo (MCMC) procedures
(Gelman et al. 2004). Third, the use of Bayesian
reasoning expands the range of possible applica-
tions of the information (Kjaerulff and Madsen
2008). This makes the transition from retrospective
analyses (e.g., What seems to have caused the
data we see?) to prospective analyses (e.g., What
would happen if conditions changed or how
would our inferences change if we learned new
information?) easier. It is important in all this to
keep in mind that our goal should not be to make
the requirements for modeling intractable.

While technical innovations that can expand
SEM’s capacity for theory translation (Grace et al.
2010), causal analysis (Pearl 2009), and statistical
specification (e.g., Lee 2007) have advanced, an
overall strategy for their integration into the SE
modeling process has not yet taken place. In fact,
many of the requirements for causal analysis and
advanced statistical analysis are incompatible
with the classical implementation of SEM via
the analysis of a covariance matrix. Thus, while
the new possibilities represent an important
opportunity for advancing SEM, there is a need

for a new synthesis of these possibilities into a
coherent whole. Such a synthesis could result in a
third generation of SEM in which theory trans-
lation, causal inference, and prospective analyses
are strengthened and integrated, allowing SEM
practice to encompass a more complete scientific
methodology.

The aim of this paper is to present and
illustrate a more comprehensive SE modeling
process that incorporates the above-described
advances in logic, specification, and estimation
into an integrated system. To facilitate integra-
tion, we use a graph-theoretic mathematical
framework so as to generalize the great variety
of possible statistical specifications and estima-
tion techniques as part of a common methodol-
ogy. To facilitate application, we expand on this
new implementation through a set of guidelines
for implementation.

Regarding the guidelines presented, we begin
by considering how the goals of an analysis
influence the model development. We then
discuss the use of metamodels to represent the
concepts of theoretical interest and the general
hypotheses being investigated. Then we describe
another newly-proposed device, the causal dia-
gram (explained below), that can be useful for
examining causal assumptions once theoretical
ideas have been represented by measured or
hypothesized variables. Completion of the full
specification of SE models into a form where they
can be quantitatively evaluated requires both an
exact statement of the variables that will be used
to represent entities of interest and the functional
forms of relationships that link the variables. We
describe how this process of statistical specification
involves a number of decisions that are influ-
enced by both the goals and theoretical back-
ground as well as the available data and its
characteristics. A very wide array of choices for
statistical specification are now possible in SE
models and managing model complexity is an
issue of concern that we discuss. Costs and
benefits of Bayesian estimation for SE models are
briefly discussed, as are some of the approaches
to model evaluation that might be considered.
Because models can range from simple to
complex in their statistical specifications, we
describe a number of options for how results
from models can be summarized. In this presen-
tation we seek to extend the traditional modeling
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process to include prospective/predictive analy-
ses and illustrate this using queries (in this
context, a query is a specific request for a quantity
or set of quantities to be computed using the
prediction equations of an SE model). Further,
we provide advice for reporting on the process
used, the results obtained, and the interpretation
of results. Finally, we illustrate these guidelines
by evaluating the linkages between human
activities and wetland ecosystem conditions on
Mount Desert Island, home of Acadia National
Park; then by forecasting the possible conse-
quences of interventions designed to protect the
wetlands from nutrient runoff.

MATERIALS AND METHODS

Structural equation modeling
Background.—The fundamental goal of SEM is

to develop and evaluate models so as to learn
about and represent underlying causal processes.
A practical sense of the knowledge required for
something to be considered a cause of something
else is provided by Pearl (2009: 417) where he
states, ‘‘Y is a cause of Z if we can change Z by
manipulating Y.’’ As will be described below, this
definition foreshadows several things, including
(1) the need for mathematical notations that
permit expression of both the direction of causal
influence and the expected effect of manipula-
tions, (2) a fundamental distinction between
causal/structural models and purely statistical
ones (based solely on probability theory), and (3)
a need for explicit consideration of causal
assumptions and the testable and logical predic-
tions they imply. While the essence of SEM is in
its intent (the pursuit of causal understanding), it
is also distinctive as a methodology because it
permits and even requires representations of
networks of relationships among variables. Clas-
sical statistical techniques do not permit suffi-
ciently flexible representation of network
relations to foster causal investigations. Further,
SEM is not a purely statistical methodology,
rather, it is a framework for quantitative scientific
investigations that uses statistical principles
along with scientific knowledge. Only the com-
bination of statistical relations and causal as-
sumptions can yield causal inferences (Pearl
2012).

Finally, while the aspiration of SEM is to learn

about causal processes, the data by themselves
do not provide enough information to demon-
strate causation (unless complete experimental
control of all processes of interest is achieved).
Ultimately, it is the process of scientific investi-
gation, the consideration of proposed mecha-
nisms, and the accumulation of knowledge that
provide the context for causal inference. Impor-
tantly, SEM results by themselves do not prove
causation; instead, the pursuit of structural
models facilitates the investigation of causal
relations.

A graphical modeling representation.—From a
mechanical viewpoint, in order to specify a
network model we need three things, (1) a
definition of graphical relations, including the
nodes in the graph and the links connecting the
nodes, (2) a vector of observed variables used to
specify a particular instantiation of our graphical
model, and (3) the statistical/mathematical func-
tions used to convey the flow of information in
the network (Kjaerulff and Madsen 2008). Thus,
we can define network N as a superset compris-
ing three sets such that

N ¼ G;X;Ff g; ð1Þ

where G is a graph set representing the network
N in general terms, X is the set of variables used
to operationalize G, and F is the set of functions
used to link nodes. Further, G¼fV, Eg where V is
the set of nodes (or vertices) in the network and E
the set of links between nodes (sometimes
referred to as edges in graphical modeling). For
the directed links in the set E, there is a
recognized set of familial relations. Given a
causally-ordered pair of variables (u, v) 2 E, u
is said to be a parent of v and v a child of u.

X, the set of variables, can include subsets that
are random (observed or latent) variables (XR) as
well as those that are derived/computed (XC), or
decision/utility variables (XD), including inter-
ventions/manipulations (Kjaerulff and Madsen
2008). X can also permit variables that are
measured or conceptualized at different hierar-
chical levels. This generalization of the variable
set substantially expands the representations
possible in SE models. The inclusion of decision
and utility variables also provides for an ex-
panded capacity of networks to support proba-
bilistic reasoning and expert system applications.
The functions F used to pass information across
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links can be of various sorts and can include both
conditional probabilities among discrete vari-
ables as well as a full array of probability density
functions among continuous and categorical
variables. Functional forms that link nodes can
be linear, nonlinear, and more complex types.

Viewing the functional forms in F generically,
the estimation problem for N can be described as
estimating the joint probability distribution over
the variables in the set X that describe the
individual nodes v in the set of nodes V in graph
G. In this context, the overall probability of a
network given a set of X variables in V nodes can
be represented by the combined conditional
probability distributions P such that

PðXÞ ¼
Y

P
�

XvjXpaðvÞ

�
ð2Þ

for all vs in V and where Xpa(v) refers to the
variables that are the parents of Xv. Thus, in a
graphical modeling approach to SEM the esti-
mation process is local and involves only limited
or partial information from the whole network.
This local estimation using ‘‘limited-information’’
methods differs from the matrix-level global
estimation or ‘‘full-information’’ procedures char-
acteristic of covariance-based SEM. The two
fundamental advantages of local estimation are
(1) it permits more complex specifications of
responses and linkages than can be summarized
by a covariance matrix and (2) a modularization
of the estimation process that avoids propagating
misspecification errors from one part of a
network to other parts (Bollen et al. 2007).

A variety of estimation approaches can be
applied to SEMs depending on several criteria,
including the specific objectives of the analysis
and the forms of the linkage functions in F. As
stated earlier, SEM is a modeling framework for
investigating multivariate causal relations and
not a specific statistical technique. Second-gener-
ation SEM has been developed based largely on
likelihood principles where we are interested in
the likelihoods of various theoretical models,
rather than null hypothesis testing where default
preference is given to an independence model.
As a result, there is a natural connection to the
Bayesian approach since Bayesian estimates are
simply the likelihoods weighted by the prior
probabilities. Bayesian estimation of SE models
using Markov chain Monte Carlo methods is
now being used with increasing frequency

(Arhonditsis et al. 2006, Lee 2007, Grace et al.
2011, Gimenez et al. 2012). Below we will say
more about selecting the estimation method from
amongst the available choices.

SEM as an inference engine.—The concept of
SEM as an inference engine (Pearl 2012) envisions
three kinds of inputs, (1) causal assumptions, (2)
a set of queries of interest, and (3) data/
information. The outputs from the analysis
include (4) the logical implications that can be
obtained from any given model independent of
the data, (5) quantities produced from the
analysis, and (6) the conditional (data-depen-
dent) claims supported by the analysis. In this
presentation we discuss these inputs and outputs
in terms of the work flow steps in the modeling
process, not as a rigid prescription, but to aid
SEM applications. In the next section, we will
briefly describe 10 steps to be considered when
applying SEM. In our presentation we place
special emphasis on practical criteria to consider
when making modeling decisions, since this is
one of the most commonly encountered gaps in
the SEM literature. In this paper we illustrate the
modeling process using a single example, thus
greatly underrepresenting the range of possibil-
ities. The rich topic of latent variable modeling
has been recently addressed (Grace et al. 2010)
and is not extensively explored here.

Guidelines for SEM
Step 1: Define the goals of the analysis.—As

indicated in Fig. 1, the goals of an application are
among the first things to consider when applying
SEM. Often there may be a particular response or
relationship one wishes to use as the focus of the
investigation. For the example presented later in
this paper, we are interested in the impact of
human activities on ecosystem properties. In
such a situation we may, for instance, wish to
treat the natural unaltered forces controlling
ecosystem properties as covariates because our
primary interest is on isolating the effects of
human activities. Such prioritizations may be
quite important when deciding what is necessary
to include in a model and what can be excluded
so as to manage model complexity.

Decisions about statistical specifications may
also be influenced by the goals of a study. When
a study is focused on evaluating the linkages in a
model, specification concerns are often directed
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toward the parameters in the linkage equations
rather than the predicted quantities (means and
intercepts) of the nodes. If we are interested in
predicting the states of the nodes, however, we
may be quite concerned about distributional
forms, since we may want the predicted scores
to be compatible with what can be observed. For
example, in the case of a quantity that is a
proportion, it is not helpful if predicted values
can range between �‘ and þ‘ when observed
values will fall between 0 and 1.0. In such a case,
the form of the specification of quantities is
important, since the specifications for prediction-
oriented studies can be technically more de-
manding. As Edelaar et al. (2012) have recently
pointed out, for certain data types only proper
specifications can yield the correct inferences
about linkages in the model.

One additional thing investigators should
consider in any modeling enterprise is the
definition of the system of interest and its
boundaries. This decision has critical importance
for how samples should be taken and inferences
made. By explicitly stating the bounds of

generalization, misinterpretation can be avoided.
There tends to be a presumption in hypothesis
testing that one is drawing inferences about some
infinitely large (relative to the sample) homoge-
neous population. For the example presented in
this paper, we instead wish to make inferences
about the wetlands of Mount Desert Island so as
to inform decision makers about potential
threats. The results may be interesting to those
investigating wetlands elsewhere (or other sys-
tems), but our study is not designed to yield
quantitative inferences for the world at large.
Further, we may view our sample as being a
collection of unique entities from a defined area
having a common set of properties, rather than
samples from an infinitely large homogeneous
population. The sphere of inference can also
influence one’s choices for modeling (e.g., the
estimation and inference system) as well.

Step 2: Develop a structural equation metamodel as
a device for representing theoretical expectations.—It
is often recommended that researchers begin
SEM with specification of the SE model. In this
presentation, we argue that a more explicit

Fig. 1. Steps in the modeling process we recommend be considered as part of the guidelines for a graph-

theoretic approach to SEM.
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treatment requires additional steps that precede
model specification. The first of these is the
evaluation and summarization of the relevant
theory that will guide model development and
the interpretation of results. One way to facilitate
this is to develop what we call a ‘‘structural
equation metamodel’’ or SEMM (Grace et al.
2010). A SEMM is a generalization of the
modeling problem that is noncommital as to
measurement, either with regards to the vari-
ables that will be included in the model or the
functional forms of the relationships between
variables. The purpose of the SEMM is to make
explicit the relation between theoretical entities
or constructs and the measurements that will be
used to represent them. The study of causation
requires a consideration of the theoretical content
behind constructs (Pearl 2009). Deciding how a
theoretical idea can be related to observations
begins with a consideration of the validity of
constructs and their hypothesized mechanistic
interactions (Borsboom and Mellenbergh 2004,
Grace and Bollen 2008). Theoretical constructs
can be thought of as formalized concepts that are
fundamental elements in theories. According to
logical positivism, these postulated items do not
really exist and theoretical concepts are merely
economical devices used to explain observable
phenomena while according to realists, theoret-
ical entities are unobserved real phenomena
(Borsboom and Mellenbergh 2004). We would
argue that both kinds of constructs show up in
theories. What is of importance in SEM is that the
way we represent a construct using variables
may differ depending on how we conceptualize
the causal content of that construct.

There are several options for the finite speci-
fication of a construct. It is common in factor
models (a core element of the ‘‘psychometric’’
tradition in SEM) that constructs are treated as
coherent latent entities and are represented using
one latent variable for each construct. The
observed indicator variables that give us infor-
mation about the latent entities are interpreted as
responses or ‘‘effect indicators.’’ However, in
cases where a construct is an aggregate concept
or ‘‘collection of things’’, it may be best modeled
using causal indicators and the construct repre-
sented in the SE model using composite variables
(Grace and Bollen 2008). Adding the step of
developing an SEMM forces the investigator to

explicitly describe the logic behind these specifi-
cation decisions. It is expected that SEMMs will
be particularly useful in studies where entities of
theoretical interest are often heterogeneous col-
lections, such as collections of species living
together in a community.

Step 3: Develop a causal diagram.—A third
possible step in SEM is to develop a ‘‘causal
diagram.’’ Causal diagrams are graphs summa-
rizing hypothesized causal connections among
variables (Pearl 1995, Greenland et al. 1999).
These graphs are distinct from SEMMs because
they specify the variables that may be included in
the SE models. Their importance lies in the role
they play in causal analysis. They are also distinct
from fully specified SE models as well because
causal diagrams are noncommital with regard to
statistical particulars such as functional forms for
equations (e.g., linear versus nonlinear relation,
Gaussian versus Bernoulli responses). Despite
this lack of commitment to a functional form,
causal diagrams can be interpreted as a general
type of probability model, allowing for the
application of graph theory and deduction of
causal assumptions and implications (Pearl 2012).
To help clarify the concept further, we may

Fig. 2. Hypothetical causal diagram showing a

hypothesized graph showing relations between a

Driver, two Mediators, and three Responses of interest.

The terms ‘‘Ox’’ refer to other factors that influence

each endogenous variable. The purpose of the causal

diagram is to facilitate careful causal analysis of a

situation so as to aid decisions about what measure-

ments are critical to obtain. Refer to the glossary of

terms in Box 1 for a more complete definition and Pearl

(2012) for further description.
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consider a causal diagram as a kind of map of the
modeling area (e.g., Fig. 2). For any given set of
SE models we intend to specify, the diagram is
intended to represent the causal domain without
regard to how much of that domain we wish to
use in creating particular models. We may, for
example develop the outward areas of our
diagram to encompass influences we know will
not be included in our SE models, such as the
potential causes of our exogenous variables. One of
the purposes of these diagrams is to allow
consideration of what variables need to be
included in an SE model so as to permit
estimation of particular causal effects of interest
(i.e., what simplifications are permissible in SE
model development). They can also be used as a
formal tool for identifying potential biases and
legal queries (those that don’t violate causal
requirements), such as predicting the effects of
external interventions. Taking as given that a
diagram is correct, one can see whether the causal
effects of interest can be estimated from the
available data or whether additional variables are
needed for a particular purpose. A new addition
to the possible steps in SEM, causal diagrams
provide a major advance for attending to the
logical requirements for causal interpretations.

Step 4: Exposition of causal assumptions and
logical implications from the causal diagram.—As
expressed by Pearl (2012), the causal diagram
permits the reading of (a) logical and testable
implications, (b) identifiable parameters, (c)
recognition of instrumental variables, (d) recog-
nition of equivalent models, and (e) recognition
of minimum admissible sets for determining
causal effects. This is a complex set of topics
and we will not attempt to cover all the relevant
concepts. Fig. 2 is a hypothetical causal diagram
to aid our presentation (we will look at a real
causal diagram for Acadia wetlands later in the
paper). This diagram includes one driver variable
(Driver1), three response variables (Response1–
Response3), and two mediators (Mediator1 and
Mediator2). Because this is a simple example, we
will only address a subset of the logical rules
governing causal diagrams. Also, it is important
to keep in mind that a causal diagram represents
a model space and we may either not have
measurements for all nodes in the space or
deliberately choose to build models that are
reduced form representations of the causal

diagram, so we can view it as a template for
model development.

There are several key concepts we need to
mention before discussing causal assumptions or
logical and testable implications in SE models.
Since our goal is to obtain estimates of model
parameters that convey causal effects, we must
consider whether such estimates are identifiable.
A parameter is identifiable if a true and unique
estimate can be obtained from observed data. In
the context of considering a causal diagram, the
identification of parameters has been described
from a statistical estimation perspective. This can
be generalized to the identification of causal
effects in nonparametric graphs as well (Brito
and Pearl 2002). In practice, identification is also
influenced by the data and limits of estimation
methods, though here we are discussing rules
that apply prior to the involvement of data or
estimates.

The topic of instrumental variables is important
for causal analysis. The relevant situation for
considering instrumental variables is when some
predictor of interest has a confounded relation-
ship with the variable representing its effect.
Confounding between a cause and its effect
occurs, for example, when there is some back-
door correlation caused by an exogenous factor
that influences both. Relative to Fig. 2, the causal
effect of Response1 on Response2 is confounded by
the joint effect of Mediator1 on both. If we lack
knowledge about Mediator1, the reduced form of
our causal diagram would be to have a correla-
tion between the errors of Response1 and Re-
sponse2. In such a case, classical estimation
methods using data for Response1 and Response2
would yield a biased estimate for the causal
effect. What can we do in such cases? This
problem has interested economists since Philip
Wright’s first attempt to offer a solution in 1928
(see discussion of the history of this topic in Stock
and Trebbi 2003). If we imagine a variable Z that
is correlated with Response1 but does not possess
an uncontrolled (backdoor) relationship to Re-
sponse2 (i.e., does not have correlated errors with
Response1) then it is possible to compute the effect
of Z on Response2 and then calculate the
proportion of that effect that can estimate the
causal effect of Response1 on Response2. Z in this
case is an instrumental variable for the task. The
challenge in real-world applications of instru-
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mental variables is with knowing that Z meets
the requirements to serve as an instrumental
variable. Causal diagrams can facilitate the
considerations associated with that decision.

Equivalent models are those that have identical
statistical expectations but different causal as-
sumptions and interpretations. There typically
exist equivalent SE models that are not valid
causal models, but that cannot be rejected based
solely on statistical model-fit criteria. An exposi-
tion of the causal assumptions in a model is given
below. That said, software designed to facilitate
the consideration of equivalent models that is
general enough to cover the nonlinear situation
would be a helpful addition to the enterprise of
thoroughly considering equivalent models. At
present, the TETRAD software (Spirtes et al.
2000) is perhaps the most complete option.

Fundamental to graphical considerations of the
requirements for determining causal effects is the
concept of d-separation (Pearl 1988). We can
understand the context for a d-separation crite-
rion by imagining that our goal is to write an
algorithm to automate the finding of appropriate
control variables for testing the conditional inde-
pendence of any pair of variables not connected by
a direct link (e.g., through the computation of
partial correlations). These algorithms can be
used to identify conditional independence impli-
cations in a causal diagram prior to model
estimation. Now, we can state that the d-
separation criterion for any pair of variables in
a graph involves (1) controlling for common
ancestors (variables that are causal antecedents)
that could generate correlations between the pair,
(2) controlling for causal connections through
multi-link directed pathways, and (3) not con-
trolling for common descendent variables. Col-
lectively, these three rules combine to provide the
guidance needed to identify the expectations
implied by a graph. Practically speaking, the goal
of d-separation is to identify cases where we
need to test for a correlation between the
residuals of two variables not connected by a
direct path to ensure a model is consistent with
the data.

Let us represent the variables in Fig. 2 using
only their first letters plus subscripts. Our goal is
to identify some set of variables S such that M1 ?
M2jS (in words, M1 and M2 are conditionally
independent if we know the variables in set S). If

we assume the linear Gaussian case, the goal is to
decide for our algorithm the conditioning vari-
ables for computing partial correlations appro-
priately. The d-separation criterion tells us that in
this graph we expect rM1,M2jD1¼ 0, i.e., the partial
correlation between M1 and M2 is predicted to be
zero. The criterion also tells us that if we were to
use any common descendent of M1 and M2 as
our control variable (e.g., R1, R2, or R3) we would
incorrectly generate a nonzero partial correlation
between our target pair of interest. Thus, the d-
separation criterion allows us to identify testable
implications in causal diagrams and in SE
models. There are several implied conditional
independences and these constitute missing
direct links in the diagram (Fig. 2). For example,
there is no link from D1!R1 in our graph. The
observed bivariate (zero-order) correlation be-
tween D1 and R1 will be determined by the
effects of D1 on R1 through M1 and M2. The
question of whether our graph is a correct causal
connection can be partially tested by determining
empirically if rM1,M2jD1 ¼ 0. Furthermore, our
ability to use the diagram to decide what models
will yield causal versus confounded inferences
depends on the assumptions, including both
testable and untestable assumptions.

Elaborating on the topic of untestable assump-
tions, there are several assumptions in our
example diagram that cannot be tested with
observational data. The causal assumption that
D1 can have an effect on M1 and not vice versa
cannot be tested by simply observing the
correlation between the two. As mentioned
above, there exist equivalent models (those with
identical independence claims but differing in
causal assumptions) that offer alternative causal
interpretations. One of the uses for a causal
diagram is to help explicate predictions that
could render these ‘‘untestable’’ assumptions
testable through interventions (e.g., experimental
manipulations). For example, Fig. 2 predicts that
if we were to manipulate values of D1, we would
see some response in M1, but not vice versa. This
implied prediction helps to identify the informa-
tion required if we need to test the causal validity
of the directed pathways in our model. Interven-
tions are incorporated into the language of
structural equations in the form of the ‘‘do(�)
operator’’ (Pearl 2009). For example, the state-
ment do(D1¼ d1) describes an intervention where
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the value of the variable D1 is set to a specific
value d1. It is a prediction emerging from our
analysis that the response of M1 to the manipu-
lation do(D1 ¼ d1) will be the same as that
expected for the passive observation D1¼ d1. The
importance of the diagram is that it represents
these various causal claims without reference to
the data or to statistical quantities.

Step 5: Evaluate specification options for SE
models.—A structural equation model differs
from a causal diagram in that SE models are
based on equations having explicit functional
forms and estimable parameters. Here we con-
sider a few of the main decisions that must be
made when proceeding from a causal diagram to
fully specified SE models. Developing candidate
SE models for an analysis requires (at a mini-
mum) consideration of (a) the focus of the
analysis, (b) characteristics of the available data,
including the sample size, and (c) an awareness
of the data requirements for various models.
There is a decided interplay between these three
categories of information and the choices for
model specification.

Step 5, part a: Consider the focus of the analysis.—
There are at least four general motivations that
we can pursue in SEM. One approach to
constructing a model is ‘‘driver focused.’’ For
example, when the goal is to understand the
consequences of changes in some driver or
drivers for a system, we prioritize model
building to maximize an understanding of the
most important responses to a driver. For
example, we might wish to model the main
consequences of variations in wildfire history in
the landscape for forest development (Laughlin
and Grace 2006). Having this focus influences
where one starts with the modeling venture, in
this case, with a good characterization of the

driver wildfire history. The emphasis then shifts
to hypothesizing about and investigating the
most significant consequences for the system,
thinking of those as cascading consequences in a
causal network.

A second possibility for an SEM application is
to be ‘‘response focused.’’ Here there is a priority
for understanding and explaining variation in a
particular property of a system. For example,
Weiher (2003) has developed a model to under-
stand controls on plant diversity in woodlands.
In such cases, the response of interest (including
its spatial and temporal properties) is first
selected and then theory and data are used to
build an understanding of the main factors
influencing variations in diversity.

A third possibility is to be ‘‘mediation fo-
cused.’’ Here, one begins with an observed
relationship between variables, for example a
correlation between the age of a woodland that is
burned in a wildfire and the degree of post-fire
recovery (Grace and Keeley 2006). A defining
motivation of SEM is the investigation of
mediating pathways so as to increase our causal
knowledge through the investigation of indirect
effects. In fact, one could argue that direct paths
in models (this includes all the directed pathways
in general linear models) are inherently in need
of further evaluation if we are to confirm or
uncover the causal connections between two
variables. The addition of nutrients to plant
communities most commonly results in a decline
in diversity (e.g., Gough et al. 2000). What is the
cause? We might imagine it is an intensification
of competitive interactions. However, SE models
have revealed that there are effects that are
unrelated to competition, a potential key mech-
anism being acidification of the soil (Clark et al.
2007). Studies of mediation are foundational to the

Table 1. Biological characteristics selected as the top candidates for inclusion in an

index of biotic integrity (Schoolmaster et al. 2012).

Biological
characteristic

Bivariate correlation
with HDI

Akaike weight for
contribution to IBI

Typha abundance 0.71 0.95
Sphagnum abundance �0.69 0.75
Perennial abundance 0.47 0.36
Forb abundance 0.60 0.36
Forb species richness �0.55 0.25
Dicot abundance 0.55 0.23
Monocot richness �0.66 0.20
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investigation of causal relationships (and outside
the capabilities of the most commonly used
framework for analyzing experiments, the
ANOVA model). The objective of the wetland
example in this paper, which is to illuminate how
elements of human disturbance affect biological
responses, is mediation-focused. We start with
the observed net relationships between human
activities and biotic indicators described in Table
1 and Fig. 3, then we seek to understand the
causal connections underlying those net relation-
ships. As an additional example, Gimenez et al.
(2012) have developed SE models for under-
standing the causal pathways whereby environ-
mental factors influence demographic
parameters in avian population.

A fourth possible motivation for applying SEM
is to evaluate a preexisting theory (i.e., to be
‘‘theory focused’’). To be focused on the confir-
matory testing of a priori theory is a major
aspiration for SEM. It is also a key aspect of
hypothesis testing when relying on observational
data (Grace 2008). Theories that generate net-
work expectations can be tested using SEM

methods for model-data consistency. For exam-
ple, Weiher (2003) performed a confirmatory test
of a published model using a new set of data
from a somewhat different ecological setting. The
results suggested the need to generalize the
existing theory to allow it to accommodate a
greater diversity of mechanisms for specific
circumstances. The introduction of SEMMs into
the modeling process is meant to foster the
translation and refinement of existing general
theories into SE models, and to promote confir-
matory testing of theories. As Pearl (2012) has
emphasized, achieving statistical model-data
consistency is neither sufficient nor even neces-
sary by itself to support causal interpretations.
Despite that caveat, evaluations of model-data
consistency can be enormously illuminating and
they frequently lead to new hypotheses suggest-
ed by model-data discrepancies.

Step 5, part b: Examine the available data.—We
should aspire in the natural sciences to have SE
models in mind when designing studies and
deciding what data to collect. This is not always
the case, in part because SEM is not part of the
traditional training of natural scientists. In this
paper we assume the available data may have
been collected prior to model formulation. There
will certainly be many situations where theory is
sufficiently strong that reference to the available
data in hand is not required for developing a
model, only for estimating its parameters. This is
more commonly true for the physical sciences
than for the biological sciences, but still true often
enough to be a reasonable expectation in some
cases. The context of this paper presumes we do
not have sufficient theory to proceed to predic-
tion using models obtained purely from reference
information.

In the majority of situations, examining the
basic characteristics of data can provide vital
information for making decisions about model
specification. Data characteristics can give us
clues about the mechanisms that have shaped
those data. What is interesting is that the
characteristics of those nodes and the bivariate
associations do not tell us necessarily what the SE
model will reveal about the network relation-
ships. While A may correlate positively with B
and B positively with C in a network model, the
direct path from A to C can easily be negative
(Grace 2006:57). For this reason, examining the

Fig. 3. Bioassessment results for Acadia National

Park wetlands (Schoolmaster et al. 2012), expressed as

a plot of scores for the Index of Biotic Integrity (IBI)

against estimates of the Human Disturbance Index

(HDI). The practical goal of the SEM example

presented in this paper is to elucidate the causal

connections between human activities (disturbances)

and the biotic responses identified in the IBI analysis.
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characteristics of the variables and the bivariate
relationships in an SEM analysis should not be
regarded as a ‘‘data snooping’’ enterprise to be
avoided. SEM is about what a set of nodes and
their linkages represent as a whole. It is
important to know what the raw materials are
for the proper specification of a model.

It is also important for the application of SEM
to understand what data characteristics imply
about the needs of model specification. For
example, zero-inflated count data may suggest
a two-process mechanism associated with organ-
ism abundance. If the odds of colonization of a
habitat by a species are different from the odds of
the organism spreading within a site once
colonized, indications of this may exist in the
data and one may wish to use a model
specification that matches this situation. At the
same time, abundance data in samples are often
proportion data and such metrics range only
from 0 to 1, not from �‘ to þ‘. As another
example, threshold relationships may be impor-
tant and estimation of thresholds in SE models
may require non-standard specifications. Also,
data are often collected in a hierarchical fashion,
or some of the explanatory variables may be at a
higher level than the response variables. Similar-
ly, spatial or temporal non-independences may
influence the data-generating process. Even if
these influences are not of theoretical interest, it
may be necessary to incorporate them into the
model specification to control for their effects on
confidence/credible intervals. The accommoda-
tions for these complexities that have been
developed in statistical modeling (e.g., Gelman
and Hill 2007, Zuur et al. 2009) can typically be
brought into SE models, though an additional
element of care is needed to accommodate the
requirements for causal interpretations.

We need to make a practical point about the
often-used assumption of a Gaussian distribution
for parameters. First, it is important to keep in
mind the differences between slope parameters
and mean/intercept parameters in models. Slope
parameters and residual errors may be Gaussian
even if the variables themselves are not. Since
SEM studies often emphasize the discovery of
linkages (network structure) rather than predic-
tion, the use of the classic linear Gaussian
approximation may be more often justifiable
than one might think given the distributions of

the variables themselves. Generally, modeling
response values themselves is more challenging,
especially when predicted scores are important
for the purposes of the study. There is a
continuous increase in the availability of statisti-
cal specifications that can accommodate non-
Gaussian errors, non-linear relations, non-inde-
pendence, and random effects (e.g., Gelman and
Hill 2007). These can be brought into SE models,
depending on the quantitative detail desired, the
priorities of the researcher, and the software used
for estimation.

Step 5, part c: Consider sample size and appropriate
model complexity.—For modeling where statistical
inference to a larger population is an objective, a
consideration of the number of samples avail-
able, and the design used to select sample
locations, are first priorities. For cases involving
a very large sample size, the challenge can be that
a high level of power can detect very minor
residual associations between variables and lead
to models with very complex graphical relations.
One solution to this problem is to emphasize
only the larger effect sizes when presenting
results and to decide in advance what magnitude
of statistical association constitutes a significant
scientific finding. On the other end of the
spectrum, it is common in ecological studies for
sample sizes to be small, especially where the
unit of observation is large and complex (e.g., an
ecosystem, such as a lake or meadow). In
general, careful consideration of the relationship
between sample size and model complexity is
desirable. It has been suggested that to a degree,
final model complexity adjusts to the statistical
power because when power is low, only the most
important relationships will be reliable enough to
require inclusion (Anderson 2008). Despite this,
there is merit in deliberately designing models
whose complexity is appropriately matched to
the available data.

An issue related to the relationship between
model complexity and sample size is the choice
of estimation method. Based on first principles,
not all methods of estimation are equally
defensible in small sample cases. The maximum
likelihood (ML) estimation procedure used in
covariance-based SEM is based on large sample
theory. There have been studies to suggest that at
small sample sizes, the use of ML in covariance-
based SEM can lead to over fitting (Bollen 1989).
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In contrast, Bayesian estimation is based on a
finite sample perspective aimed at reducing
uncertainty. Lee and Song (2004) have examined
the relative performance of ML and Bayesian
estimates as small sample sizes in SEM studies.
They approached this problem in terms of the

parameter d where d ¼ n/a and n is sample size
while a is the number of parameters requiring
estimation. Because their focus was on the small
sample case, they investigated values of d
ranging from 2 to 5 using simulation studies
and compared ML with Bayesian MCMC esti-

Fig. 4. (A) Upper-tier and (B) lower-tier structural equation metamodels (SEMMs) for the modeling of Acadia

wetland plant communities. The nodes being represented are theoretical constructs that are defined (at this point

in the analysis process) only at the linguistic level. Nodes are represented using rounded rectangles with dotted

outlines to denote the fact that it has not yet been determined how observed, latent, or composite variables may

be used to represent them in a SE model. The upper-tier metamodel (A) shows the hypothesized situation at the

most general level. The lower-tier metamodel provides a more detailed view of the concepts that will be

represented in SE models.
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mation results for two types of structural
equation models. Their conclusion was that even
at these small information values a Bayesian
approach can be defended, while maximum
likelihood is noticeably less reliable. This implies
that at the very least SEM studies having low
values of d may wish to use or validate their
results against Bayesian estimates.

Step 5, part d: Consider the merits of including
latent variables in your models.—Another major
decision relates to the question, ‘‘Do we need to
include latent nodes/variables in the model?’’
There are persuasive arguments for including
latent variables. Latent variables can allow
models to better reflect the underlying mecha-
nisms that lead to manifest observations, thereby
supporting causal interpretations through this
more theoretically-sound representation. In ad-
dition, they can be useful in adjusting for
measurement error and removing this common

source of bias from the parameter coefficients
(Grace 2006:80–82). Finally, latent variables pro-
vide a way to represent more abstract theoretical
concepts (e.g., ‘‘biotic integrity’’). Despite their
appeal, modelers need to be cautious about
including latent variables in models because their
properties do not always or automatically match
causal expectations (Grace and Bollen 2008).
While latent variables can enhance the theoretical
content of a model, they can also distort the
meaning and foster incorrect interpretations as
well. This complex of issues is discussed at length
in Grace et al. (2010).

Step 6: Selection of estimation method.—Since the
early 1970s, the default estimation method in
SEM has been the application of maximum
likelihood methods to the analysis of covariance
relations. The revolutionary idea of working with
the covariance matrix instead of the individual
observations (Jöreskog 1971) made possible

Fig. 5. Initial causal diagram for Acadia wetlands. This diagram is ‘‘overspecified’’ in that it includes nodes that

will not be explicitly included in the SE models developed from it. Specifically, the node for ‘‘nutrient loading’’

represents a process for which no measures are available and ‘‘hydrophyte selection’’ represents a process (the

elimination of flood intolerant species) that will not be included in the SE models for simplicity. These extra nodes

are devices to aid decision making during the process of deciding what measurements need to be taken and what

is to be included in the SE models to obtain causal interpretations. The other factors ‘‘Ox’’ that influence variables

described in Fig. 2 are not shown here explicitly for visual simplicity.

v www.esajournals.org 17 August 2012 v Volume 3(8) v Article 73

SYNTHESIS & INTEGRATION GRACE ET AL.



estimation for a great variety of model types, in
particular those involving latent variables and
those with causal loops (nonrecursive relations).
In this approach, observed covariances are
compared to the model-implied covariances and
a maximum likelihood-based minimization pro-
cess leads to the selection of parameter estimates.
Also derived is a measure of the total discrepan-
cy in the model, which provides an overall
measure of goodness of fit. This comparison of
the observed covariance matrix against the
model-implied matrix has the consequence that
estimation and model evaluation are based on
the entire model. This approach is still the
dominant methodology in use today, it is
applicable in a great variety of circumstances,
and it is implemented in all the major SEM
software packages. Its merits include the ability
to produce rapid solutions for complex models, a
fair degree of insensitivity to collinear relations,
and an ability to confirm or reject the entire
model. The primary compromise made to permit
the elegant solutions provided by covariance-
based methods is the assumption of linear
Gaussian relations or some generalization of this
specification that permits the data to be summa-

rized effectively in matrix form. Over the years, a
number of adaptations have been made to permit
relaxation of the linear Gaussian assumptions
while still relying on the analysis of the covari-
ance matrix (Muthén 1984, Satorra and Bentler
1994, 2001). Today, the analysis of categorical,
censored, and count data along with multi-level
structures is possible using covariance analysis
and approximating methods.

The matrix implementation of second genera-
tion SEM has the potential negative consequence
of propagating incorrect estimations caused by
misspecifications to the whole model (Pearl
2012). Further, the generation of model fit indices
that summarize the entire matrix of discrepancies
implies to some the potentially erroneous idea
that adequate model fit automatically indicates
the model meets causal criteria. Local estimation
based on nodes and their parents permits an
escape from these problems (though it generates
a need for the kind of model checking for which
the d-separation criterion was developed). What
is required for such an approach, however, are
estimation methods that are compatible with
local evaluation. For path models having no
latent variables and no causal loops, most

Fig. 6. Initial structural equation model. Color schemes are meant to match variables in the SE model with

theoretical concepts in the metamodels (Fig. 4). Epsilons (e) represent error terms, which connote the influences

of factors uncorrelated with predictors on a variable.
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estimation methods can be utilized in a local
estimation process (e.g., Shipley 2000b). For SE
models generally, however, a Bayesian estima-
tion approach is one way to obtain local
estimation for the full suite of model types (Lee
2007).

Bayesian estimation has become popular in the
past decade in large part due to its implementa-
tion via Markov chain Monte Carlo methods
(Geman and Geman 1984, Gelfand et al. 1990).
Application of Bayesian methods to SEM is now
seeing increased use (Ansari et al. 2000, Rupp et
al. 2004, Dunson et al. 2005, Arhonditsis et al.
2006, Lee 2007, Grace et al. 2011, Gimenez et al.
2012). A characteristic of a Bayesian implemen-
tation of SEM is that the analysis is now
examining individual data points at the equation
level and not based on the covariance matrix
summarization of the observations. This equa-
tion-level implementation along with the flexi-
bility in estimation afforded by the MCMC
approach now permits much more complex
specifications. Bayesian estimation also permits
the use of priors to inform the estimation process
and to provide data augmentation procedures for
use with missing data. As mentioned above, in
the case of small-sample analyses, Bayesian
methods have been shown to have a significant
advantage over the maximum likelihood method
(Lee and Song 2004). Bayesian estimation for a
very limited set of models is now being imple-
mented in some of the commercial software
packages (Arbuckle 2011, Muthén and Muthén
2011). There is a cost to all this flexibility and
precision, however, both in terms of training and
in implementation. We believe that a fully
Bayesian approach to estimating and evaluating
SEMs will typically be motivated and justified by
some specialized need until more automated
procedures are developed.

Step 7: Specify candidate SE models.—The con-
siderations described in the previous sections
provide the basis for fully specifying the forms of
equations that will be needed to permit the
available data to provide valid estimates for the
parameters in the SE models. To some degree,
model specification will remain a bit of an art
because of the great variety of possibilities. As a
result, we can expect modeling advice to be in the
form of guidelines and an incomplete set of
examples. In the example presented later in the

paper, we try to present the rationale behind the
specification choices made, though we recognize
that a complete presentation is not possible in a
journal article.

It should be kept in mind that the strength of
inference obtained from a modeling effort is
influenced by how many models are examined.
In highly exploratory applications, a great many
models may be evaluated using the available
data, generating an elevated opportunity for
model selection to be influenced by chance
variations in the data. In such situations, confir-
mation using a second data source, either for the
whole model or for individual linkages, is highly
desirable (depending somewhat on the size of the
sample being examined). Applications involving
a limited subset of candidate models can be
thought of as comparisons among competing
models and tend to inspire more confidence in
the repeatability of the findings (all other things
being equal).

Step 8: Estimation, model evaluation, and respeci-
fication.—At this stage, estimation of parameters
is needed in order to evaluate testable implica-
tions of the SE model. We do not make a final
interpretation of the quantitative estimates until
we are confident the graph is consistent with the
data. Thus, the process of evaluation involves (a)
estimation of parameters, (b) checking of condi-
tional independences to see if important linkages
have been omitted, (c) consideration of whether
the model is overspecified and can be simplified
without loss of information, and then (d) cycling
through that process again until model-data
consistency is declared.

Details of the estimation options for SEMs with
latent variables are described by Lee (2007). The
primary methods described include maximum
likelihood (ML), generalized least squares (GLS),
and Bayesian MCMC solution procedures. In all
cases, the estimates obtained can be used as a
basis for checking model-data consistency. There
are several different ways model-data consisten-
cy can be evaluated. In classical SEM, which
typically relies on ML or GLS (or even two-state
LS) to derive parameter estimates, discrepancies
between the model-implied and observed covari-
ance matrices provide indications whether or not
‘‘things add up’’, which is one way of evaluating
consistency, usually in terms of a model fit
statistic such as the model chi-square. There are
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several key assumptions being made in such
evaluations, in addition to the usual statistical
assumptions, and it is important to keep them in
mind. First, we are assuming that the covariance
matrix summarizes the data sufficiently well to
avoid leading to incorrect conclusions. Data may
be nonlinear or even exhibit discontinuous
relationships (e.g., thresholds) and these relation-
ships are not easily summarized in terms of
covariances. Second, we are assuming that a
measure of overall fit is sufficient to evaluate the
linkages in a network. Third, it is sometimes
assumed that finding close model-data fit auto-
matically leads to the interpretation of parame-
ters as causal estimates, which is not a generally
supportable assumption. When Bayesian MCMC
methods of estimation are used, a covariance
discrepancy function is not computed and we
must find another way to evaluate network-data
consistency. Bayesian methods typically rely on
quantities such as the deviance information

criterion (DIC) or posterior predictive p (PPP)
to summarize fit. These quantities are not
satisfactory, however, for judging G (the graph
representing a network in general terms) in any
overall way. In the absence of a covariance matrix
approach, linkages/edges E in the graph G must
be judged individually, which requires the use of
graphical modeling methods (e.g., Koller and
Friedman 2009). We illustrate this approach in
our example application (e.g., Fig. 7).

Judging the structure of a graph involves both
the evaluation of the linkages included as well as
the discovery of missing linkages. A graphical
modeling approach to evaluating graphs recog-
nizes that linkages can be of many different
functional forms. Summary methods such as the
computation of partial correlations or implied
partial correlations or their derivatives afford
limited information and can fail to diagnose
nonlinear and discontinuous relationships. For
this reason, a more complete inspection of

Fig. 7. Scatter plots of residual relationships in the initial SE model (Fig. 6). Residual relationships represent the

associations evaluated if a path between unconnected variables was added. All y-variables in the plots shown are

residuals (deviations from predicted scores based on paths explicitly included in the model). In this particular set

of examples, the x-variable (Land Use) is categorical, ranging from 0 to 3 and exogenous in the model. For

exogenous variables, their scores are not predicted by other variables and, thus, there is no difference between

their raw scores and their residual scores.
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residual relationships can be desirable. Commit-
ting to a search for missing linkages in the graph
that allows for nonlinearities is currently a less
streamlined process compared to that associated
with classical implementations. On the other
hand, the direct examinations required for
complete evaluations are subject to fewer statis-
tical assumptions. We use a graphical modeling
approach to evaluating the graph in our example
presentation by first evaluating the form of the
residual relationships visually. It should be noted
that classical analyses using covariance-based
procedures permit double-checking of the net-
work using graphical modeling methods, while
piecewise solution methods such as Bayesian
MCMC require them.

In our experience, respecification is often
required, since many of the models initially
considered fail to demonstrate model-data con-
sistency. This is normal and constitutes a valu-
able learning process (one that is largely missing
from classical statistical analyses using non-
network models). The most common types of
respecifications include (a) inclusion of addition-
al directed pathways, (b) removal of direct
pathways, (c) evidence for unanticipated corre-
lations, either between variables or between their
errors, and (d) changes in the functional forms
used for linkages, such as those needed to
accommodate nonlinear relations. Once a model
has been provisionally accepted as the best
model for the situation (provisional until addi-
tional data are obtained or additional diagnostics
are performed), it is often useful to perform
sensitivity tests on the model to ensure that there
are no major nonindependences remaining in the
model. Failure to include important missing
relationships may, depending on the situation,
introduce bias into the estimates.

Step 9: Discovery, quantities, and queries.—SEM
analyses produce a variety of types of results.
One interesting and important class of results
relates to the topology of the graph (linkages and
possible simplifications). These are particularly
interesting because each pathway in a graph is
generally thought to represent a separately
distinguishable mechanism. Qualitative conclu-
sions about the graph have implications that
relate back to the causal diagram. Fig. 2 states
that there are two main mechanisms whereby D1

affects R1 and one of the mechanisms operates

through M1 while the other operates through M2.
Of course we know that behind qualitative
conclusions are quantities about which decisions
have to be made (e.g., declarations of signifi-
cance). These decisions are generally made in the
previous step (Model evaluation), but their conse-
quences permeate the rest of the process. If we
decide that a direct path from D1 to R1 should be
included in our graph, we may have discovered a
new process if we previously had no expectation
for such a connection. The discovery of evidence
for new mechanisms via the identification of
missing links is one of the most exciting aspects
of SEM. Similarly, model comparisons that lead
to conclusions about mechanisms supported
through the inclusion of a hypothesized linkage
are notable and often emphasized in SEM
studies.

Aside from being interesting, conclusions
about the topology of the graph are important
for the sufficiency of the other results obtained.
Deciding that a direct link between D1 and R1

should be included not only has logical implica-
tions (e.g., concluding that variations in D1 that
do not produce changes in either M1 or M2, will
still have an effect on R1), it also influences at
least some of the quantitative estimates of the
effects along the directed pathways connecting
D1 with R2. This is the reason that one should not
seek to interpret the quantitative values of effects
until one has ensured the graph is supportable.
As mentioned earlier, estimates of causal effects
depend on the correctness of the graph—not
necessarily the entire graph, but at least the part
of the graph relating to the causal effects of focal
interest.

An extension to the question of whether all
important links are included in a diagram is the
question of whether we might decide that some
can be removed. We may anticipate processes
represented by linkages in our diagram that do
not turn out to be important in a particular study.
This affords us the opportunity to simplify our
graph by removing unimportant linkages (there-
by setting the estimates of their quantitative
effects to zero). Sometimes this simplification
process can even allow us to remove nodes
(variables) if their variations do not appear to
have any consequences for other nodes. This is
not the same as another kind of simplification
sometimes called ‘‘node absorption’’ (Kjaerulff
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and Madsen 2008) in which a model is simplified
by removing a node, not because its effects are
unimportant but in order to remove it from overt
consideration while absorbing its causal influ-
ences into the pathways passing through it.

Quantitative effects are often of major interest
in SEM studies. Proportion of variance explained
is often one example. While strongly dependent
on the sampling scheme and not strictly a
measure of invariant properties of the system
being studied, estimates of variance explanation
are often of interest in judging success in
modeling variations among samples. Relative
magnitudes are also commonly of interest. For
example, there is currently keen interest in the
relative importance of top-down versus bottom-
up control in food webs, in part because of the
implications for environmental protection needs
(Riginos and Grace 2008, Byrnes et al. 2011).
Grace and Bollen (2005) discuss some of the
fundamental issues with standardized parame-
ters and suggest a new approach where coeffi-
cients are standardized by ranges instead of
standard deviations. For models containing
linkages that are not simply Gaussian and linear,
obtaining standardized coefficients that permit
comparisons across paths requires additional
considerations. This relates to the general prob-
lem for models with complex specifications that
we may need to use results from queries in place
of conventional quantities in order to make the
needed interpretations.

The utility of queries in SEM relates to the fact
that the implications of quantitative results are
not always simply conveyed. We illustrate below
ways that queries can be used to summarize
relative sensitivities in models as one example of
their use. Also, models will not always be based
on simple linear functions. How does one
summarize an effect when it is nonlinear? Using
queries allows us to pose scenarios that permit
illustration of the implications of the parameter
values as well as alterations of those values. For
complex nonlinear models it can be quite helpful
for the reader if the investigator conveys the
main points and most important findings by
posing queries. Further, an emphasis on queries
should become common practice as we place
more emphasis on prospective reasoning from
SEM results.

There are at least four kinds of queries. Queries

that relate to future states given current condi-
tions are predictions. These are statements about
what value of Y we would expect to observe if in
the future we observed a particular value of X
(for the case where X is a cause of Y ). An
important alternative query about future obser-
vations is the intervention. Here we ask what
value of Ywe would expect if we were to cause X
to change to a particular value x. Retrospective
queries about what led to the currently observed
states can be thought of as attributions. In the
ecological example of wetlands that follows, we
will use scenarios to summarize evidence about
the relative importance of different influences
that contributed to the observed responses.
Finally, another query about the past is the
counterfactual. A counterfactual claim refers to
the retrospective question, ‘‘What would have
happened if . . . ?’’ For example, we might ask,
what do our model results imply would have
happened if a particular individual had been in
the control group rather than in the test group.
Thus, we can see that queries will play important
roles in both retrospective and prospective
considerations of our model and its parameter
estimates.

Step 10: Report methods, findings, and interpreta-
tions.—It should be remembered when reporting
on an SEM analysis that the description of
methods should strive to be sufficiently complete
that an analysis is repeatable, or at least
reproducible. Bivariate relations are also infor-
mative, even if their relation to causal interpre-
tations are not straightforward in many cases.

We should always remember in causal model-
ing that our inferences depend fundamentally on
the assumptions embodied in the graph. The
language one uses to convey their findings and
interpretations should likewise reflect this condi-
tionality. It is worthwhile declaring an awareness
of the conditional nature of claims early in the
paper. Then when one starts describing things
like ‘‘total effects’’ in the Results section of a
paper it will be understood by the reader that the
author is not naive about the requirements for
causal inferences.

Reporting estimated parameter values and
expressions of uncertainty about them is a
minimal requirement. Simply showing SE mod-
els as graphs with relative quantities expressed
through the thicknesses of arrows is not suffi-
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cient. Unstandardized (raw) estimates of param-
eter values are fundamental quantities and
should be reported. Depending on their inter-
pretability for the situation (e.g., if complex
transformations to the data have been applied),
unstandardized results may be relegated to an
appendix. Investigators often chose to describe
their findings using standardized expressions of
parameter estimates. The interpretation of these
coefficients is subject to certain caveats, of which
the investigators should be aware (Grace and
Bollen 2005). We will show how queries can be
used as an alternative means for generating
measures of relative sensitivity.

RESULTS

Illustration: The wetlands of Mount Desert Island
and Acadia National Park

The data.—Acadia National Park is located on
Mount Desert Island on the coast of Maine,
occupying a major portion (roughly two-thirds)
of the island, but with substantial private lands
within its authorized boundary (Tierney et al.
2009). Mount Desert Island is a 24,000 ha granite
bedrock island and includes the highest moun-
tain on the Atlantic coast of the U.S. As a
consequence of its mountainous topography,
wetlands on the island are in relatively small
catchments. The soils are shallow in the uplands
while the wetlands are often peat-forming,
receiving their water largely from acidic and
low-nutrient inputs from rain and surface runoff
(Kahl et al. 2000).

For this analysis, we used data from recent
studies by Little et al. (2010) and Guntenspergen
(unpublished data) on human activities and wet-
land plant communities on Mount Desert Island.
In these studies, 37 nonforested wetlands were
examined as part of an assessment of the
relationships between degree of human develop-
ment, biological characteristics, hydrology, and
water quality. We added to the available infor-
mation by quantifying degree and type of
specific human disturbance activities in the
vicinity of wetland catchments using a modifica-
tion of the rating system developed for wetlands
by the Ohio EPA (Mack 2001). This resulted in
the ordinal rating of (1) the degree of human
development in the watershed, (2) the degree of
alteration of the natural hydrology, (3) human

intrusion into the buffer zone (for a review of this
subject, see Castelle et al. 1993; here we simply
measured whether human developments came
within 50 m of the edge of the wetland and if so,
exactly how close.), (4) soil disturbance, and (5)
habitat alteration. We then constructed a human
disturbance index (HDI) for Acadia wetlands
and used the HDI to select biological character-
istics of the plant communities that represent
sensitive responses to human disturbance
(Schoolmaster et al. 2012). After screening met-
rics from a large set, a list of seven (Table 1)
biological characteristics was chosen as candi-
dates for constructing an index of biotic integrity
(IBI) (Karr 1981, Karr 1991, Barbour and Yoder
2000). Below we use the guidelines presented in
Fig. 1 to develop a SE model so as to provide an
interpretive structure for the net relationship
shown in Fig. 3. Step 10, which deals with
reporting methods, findings, and interpretations
will not require recapitulation and will be
skipped in the example.

Step 1: Defining the goals of the analysis.—The
analysis presented here has two goals. The first is
to learn about the different mechanisms by which
human activities on Mount Desert Island might
impact the natural properties of wetlands.
Starting from the results produced from a
bioassessment of the wetlands (Table 1), we are
motivated to understand the mediating factors
and processes connecting the degree of human
development to biological changes. The second
goal of this study is to specify our SE model(s) in
such a form that they can permit queries that will
potentially guide the protection or restoration of
wetlands in Acadia National Park. In this
analysis, we capitalize on the range of distur-
bances on the island so as to perceive threats and
consider remedies that can be applied to the
wetlands with protected status that occur within
park boundaries. This goal has the following
implications: (1) Our system of primary interest
is the wetlands in and around Acadia NP and we
wish our results to generalize to that set.
Inferences to other wetlands elsewhere is a
(potentially large) side benefit. (2) While the
sample of 37 wetlands is small in absolute terms,
we note that the universe of inference, the
complete set of wetlands in the park, is estimated
to be somewhere around 1,600 (Guntenspergen,
unpublished data). Additionally, we realize that
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the wetlands sampled may become sentinels for
the system, thus they will in the future play a role
as indicators. Detecting significant changes in
these indicator wetlands becomes one inference
problem and, of course, the extrapolation of
conclusions from those wetlands to others
another. (3) A third implication of the applied
intent of this study is that it would be helpful if
the analyses produced results and implied
predictions in a form that can be directly
compared to observed quantities. This motivates
us to use realistic model specifications of counts,
proportions, and thresholds so that predicted
scores are directly comparable to present and
future observations.

Step 2: Development of a structural equation
metamodel.—In this step, we wish to begin the
conversion of our linguistic understanding into
formal concepts and relationships. In this case,
the context is that human activities may lead to
changes in environmental conditions that reduce
biotic integrity in wetlands. A key question
within this context is, ‘‘What are the mediators
of those effects?’’ Knowing the mediators be-
tween human activities and biological changes is
not only important for our understanding, it also
may provide opportunities for interventions that
could reduce adverse effects. Among the many
possibilities, human activities are known to
commonly alter both the hydrology and water
quality in wetlands. For example, in the Florida
everglades both alterations of hydrology and
inputs of nutrients have been implicated as the
two most important drivers of change in that
system (Newman et al. 1998). Of course human
activities are not confined to just the land
surrounding wetlands but can occur in wetlands
in the form of haying operations, cattle grazing,
and prescribed burning. In the case of the
wetlands of Acadia National Park, such direct
physical disturbances are not known to be a
current threat to the wetlands because of their
protected status, so such physical disturbances
are not considered here. In addition to human
activities, the natural influences of beaver must
be recognized (Little et al., in press). An addi-
tional construct included is the broad class of
influences we refer to as environmental covari-
ates. Covariates such as these can both mask and
exaggerate the apparent effects of human activ-
ities (Schoolmaster et al. 2012). Explicit connec-

tions among five of the constructs are shown in
the construct model (Fig. 4). The connections
omitted (e.g., directly from human activities to
biological integrity) represent the optimistic
hypothesis that the important mediators will be
represented by the variables available. Note also
that environmental covariates are included in the
figure as a cautionary reminder to consider the
influences of this class of factors when specifying
the causal diagram and SE models. We point out
that the SEMM could be developed at a
somewhat more detailed level, as long as the
constructs are defined as theoretical/hypothetical
entities. Once a model is specified at the level of
variables, we are now at the level of the causal
diagram, or if complete statistical specifications
are included, the SE model.

Step 3: Development of a causal diagram.—A
causal diagram for the Acadia wetlands is shown
in Fig. 5. This represents a partial specification of
the ideas in the SEMM based on the variables
that might be included in SE models (Table 2).
Regarding the specification of constructs, the
construct related to human activities is clearly
one that is multidimensional. The methods used
to develop an index of human disturbance
included quantifying the degrees of (a) human
development, (b) alterations of wetland hydrol-
ogy, (c) intrusion into the buffer zone around the
wetland—i.e., how close alterations come to the
water’s edge, (d) soil disturbance adjacent to a
wetland, and (e) habitat alteration (e.g., tree
removal). Since habitat alteration was not seen as
likely to have a direct causal effect on plants in
the wetlands, this metric was not included in the
diagram. For the others, a set of hypothesized
causal linkages are represented. These hypothe-
sized linkages represent causal assumptions that
are embodied in the diagram. We can addition-
ally consider these to be hypothesized relations
that have testable implications and can be
examined once structural equation models are
specified, estimated, and evaluated.

Regarding the representation of the construct
called biotic integrity, we selected three key
metrics to represent dimensions of integrity
(Fig. 5) based on their unique (nonredundant)
information content about impacts of human
activities (Table 1). Of the biotic responses the
one ranked most uniquely indicative of human
disturbance based on multimetric index analysis
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(Schoolmaster et al. 2012) was the cover of
cattails (Typha spp.). The simple bivariate corre-
lation with the human disturbance index (HDI)
was the strongest of any metric examined (0.71).
Further, the presence and abundance of this plant
in Acadia wetlands is of management concern
because it is another highly ranked responder to
human activities. Cover of this species serves as
an indicator of the status of peatlands, a
community type of special conservation value.
Cover of Sphagnum possesses the second stron-
gest simple bivariate correlation with HDI
(�0.69). A third biotic response, the richness of
native species, was selected as a sensitive
indicator of highly disturbed wetlands.

There are several possible variables that could
represent the two key mediation processes
hypothesized to be important (Table 2). One of
the hypothesized mechanisms that could lead to
increases in plant production and Typha inva-
sions, as well as a reduction in Sphagnum and
indirectly a loss of diversity, is an increase in
mineral nutrient concentrations in the water.

While direct measures of nutrients were not
available, for systems such as these that are
naturally very low in mineral concentrations
(because of the granitic nature of the bedrock),
water conductivity can serve as a useful surro-
gate. Water pH could also be considered as an
indicator of the mediating process. The other
mediating mechanism hypothesized to be in
operation is variations in water levels. Several
hydrology variables were measured in the course
of the study of these wetlands.

Step 4: Exposition of causal assumptions and
logical implications from the causal diagram.—Box
2 provides a summary description of the theo-
retical basis (in the form of 16 causal assumptions
and hypotheses) for interpreting the linkages
included in the initial causal diagram (Fig. 5). In
the absence of physical interventions (e.g.,
through experimental manipulations), the direct-
ed linkages represent untestable assumptions/
implications, though they can also be thought of
as predictions of the consequences of future
manipulations. The assumption of sufficiency

Table 2. Theoretical constructs (see Fig. 4) and available data related to those constructs.

Theoretical constructs Observed variables related to construct Properties of variables

Human activities intensity of land use very low to very high; (0, 1, 2, 3)
intrusion into the wetland buffer buffer . 50 m to buffer , 10 m; (0, 1, 2, 3)

hydrologic alteration none to highly altered; (0, 1, 2, 3)
soil disturbance none, recovered, recovering, recent; (0, 1, 2, 3)
habitat alteration none, recovered, recovering, recent; (0, 1, 2, 3)

Biotic responses: ecosystem
eutrophication

Typha cover 0–100%; semicontinuous

total forb cover 0–100%; semicontinuous
maximum vegetation height 0–max. value; continuous

total dicot cover 0–100%; semicontinuous
total perennial cover 0–100%; semicontinuous

total native plant cover 0–100%; semicontinuous
total fern cover 0–100%; semicontinuous
total tree cover 0–100%; semicontinuous

Biotic responses: Sphagnum total Sphagnum cover 0–100%; semicontinuous
Biotic responses: plant

species diversity
monocot richness 0–maximum; counts

native richness 0–maximum; counts
forb richness 0–maximum; counts

tree species richness 0–maximum; counts
dicot richness 0–maximum; counts
shrub richness 0–maximum; counts
fern richness 0–maximum; counts

Mediators: water quality surface water conductivity continuous
surface water pH continuous

Mediators: hydrology average water depth �‘ to þ‘; continuous
SD of depth continuous

maximum depth continuous
minimum depth continuous

time soil surface flooded 0–365 days; proportional count
time water below 30 cm 0–365 days; proportional count

Covariates beaver no sign, abandoned, active
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Box 2

Causal assumptions/hypotheses embodied in the initial causal diagram (Fig. 5).
I. A high intensity of human development in the watershed of a wetland has several

implications:
(1) It potentially increases the probability that some activities will occur very close to the

edge of the wetland (buffer intrusion).
(2) It increases the probability that flows of water will be impacted. This is potentially a

complex expectation. If alterations are primarily related to roadways and flood control,
we expect water levels to be stabilized via a set of impoundments, culverts, and
drainage ditches. This appears to be the nature of the hydrologic alterations for the
majority of wetlands sampled, based on the pattern of association between degree of
alteration and increased stabilization of water levels.

(3) It increases the potential for soil disturbance adjacent to the wetland, but only when
there is intrusion into the buffer zone.

(4) It can be expected to affect the activities of beaver. One might expect an avoidance of
heavily developed areas by beaver as a general expectation. As with any wild mammal
that coexists with humans, its behavior reactions can be complex and there is some
indication that beaver are attracted to some human-caused structures.

II. Only a limited variety of water quality variables were measured in the bioassessment of
wetlands. These included electrical conductivity, a measure of total solutes, and pH. Of
these two highly correlated measures, conductivity levels are a more general indicator of
conditions important to plant communities in a soft-water landscape. The diagram
anticipates several causal effects on conductivity effects.
(5) Conductivity can be expected to be higher in wetlands with adjacent soil disturbance

because loose soil easily transports solutes and nutrients.
(6) Even when human developments do not intrude into the buffer zone around a wetland,

human activities generate high nutrient loads generally and these can easily pass into
wetlands via culverts and drainage ditches. Thus, there is likely to be increased
conductivity in wetlands with high levels of human development independent of
mediations through buffer intrusion and soil disturbance.

III. The hydrology of a wetland is influenced both by surface flows and ground water flows.
Both of these may be impacted by human activities. Hydrologic alterations include
roadways and dams that impede water flows as well as drainage ditches, culverts, and
overflows that direct the flow of water. These are often added in combinations that are
designed to stabilize hydrology. Ditches and tiles designed to drain wetlands are common,
but apparently in the wetlands involved in this study such historical influences are not
evident. Related to Assumption 2, it is our assumption in the initial causal diagram that if
hydrology has been altered by human activities, that will be reflected in the metric
‘‘hydrologic alteration.’’
(7) We hypothesize that when human activities intrude into the buffer zone, there may be

additional hydrologic alterations added.
IV. The investigation of Acadia wetlands included measurement of hydrology for a subset of

the wetlands. It was possible to benchmark these to average plant hydric affinity and then
use missing data imputation methods to create a complete set of estimates for certain
hydrologic variables. The hydrologic measurement most tightly associated with plant
hydric affinities was the proportion of time the wetland was inundated (duration of
flooding). The diagram assumes the following:
(8) Degree of hydrologic alteration leads to stabilization of water levels and a longer

duration of flooding.
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for the included links leads to expectations of
conditional independence among nodes not
connected by direct linkages. This extends to a
prediction of uncorrelated errors for the vari-
ables. For the causal diagram in Fig. 5, there are
45 possible links, 16 included links, and 29
implied conditional independences that consti-
tute testable implications. These causal claims
can be made prior to deciding on the specifica-
tion of functional forms for the structural
equations. That said, our ability to properly
evaluate the evidence for linkages and omitted
links does depend on our statistical specifica-
tions.

In this real-world application, we believe we
have most of the measured variables needed to
be able to identify the majority of effects implied
by the causal diagram. One effect of concern
because of limited data is the effect of beaver

activities on duration of flooding. We are also
concerned about beaver effects on biotic mea-
sures, even though we don’t hypothesize those as
direct effects in our initial causal diagram. If we
develop a SE model that omits measurements of
beaver activities, what are the options available?
If the causal diagram in Fig. 5 is correct (and it
may not be), we can develop a model that is a
reduced form of the diagram and include a direct
path from intensity of land use to duration of
flooding. This path would represent a model
simplification that absorbs hypothesized beaver
effects into a net direct effect. The causal diagram
helps us to describe and interpret this node
absorption.

Any confidence we may have in our initial
causal assumptions and the adequacy of our
ability to isolate causal effects can be altered by
unexpected findings resulting from the estima-

Box 2. Continued.

(9) Beaver, which are famous as ecosystem engineers, also act to increase duration of
flooding, both by increasing the average water depth in a wetland and by impounding
flows. When beaver abandon a wetland, however, there can be an abrupt drop in water
levels and shortening of hydroperiod.

V. Typha invasions have been studied extensively. While our predictive understanding is still
incomplete, two things are well documented and embodied as causal assumptions in the
diagram:
(10) Increased nutrient loading and increases in water conductivity increase the probability

that Typha species will invade a wetland and also increase the abundance of Typha
when they do colonize.

(11) Increased flooding duration promotes both Typha colonization and population
development, at least up to a point (Grace 1987).

VI. Sphagnum peatland communities are special community types, generally being of high
conservation value, in part because they require biotic control over the abiotic conditions.
Low conductivity water sources are generally necessary, as are unbuffered, low pH inputs.
Peatlands are also dependent on stable water levels and can be reduced both by drainage
and excess flooding. The causal diagram permits the following:
(12) Increased conductivity will be detrimental to Sphagnum abundance.
(13) Increased flooding will lead to reductions in Sphagnum.
(14) High levels of Typha will crowd out Sphagnum over successional time.

VII. Plant species richness is highest where water levels are shallow and water levels fluctuate.
The diagram assumes the following:
(15) Species richness of all groups, as indicated by forb species richness, will decline with

increased duration of flooding.
(16) High levels of Typha will lead to a build up of plant litter and reduced germination

levels, eventually resulting in reduced diversity of forbs.
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tion and model evaluation process. We antici-
pate, based on experience, a good chance that our
causal diagram will need to be altered based on
empirical findings before a final SE model is
usable for inference about the system. This
should be considered normal for first time
applications of causal modeling in many settings.
For this reason, it is useful to explicitly empha-
size that the causal assumptions that are not
testable using observational data should be
treated as predictions that might be evaluated
given future interventions.

Step 5: Evaluation of specification options for the
SE models: (a) Focus of the analysis.—The modeling
effort here is ‘‘mediation focused’’ in that we
wish to investigate the causal network of
connections between human development, me-
diating changes in the environment, and biotic
responses. Included is the ambition to arrive at a
plausible understanding of how different aspects
of human activities are interconnected. Also, we
wish to consider whether biotic responses are
independent or are causally linked. The causal
diagram expresses the hypothesis that sufficient
cattail cover may lead to reductions in Sphagnum
and native species richness. The two primary
mediator variables, conductivity and flooding,
are hypothesized to convey the complete effects
of human and beaver-caused activities on biotic
responses. It is not expected that this simple
result (which can be referred to as complete
mediation) will necessarily be supported by the
data. Additional influences of human distur-
bance on biotic conditions that do not pass
through our two mediators are certainly possible.

(b) Consideration of the available data.—Data
characteristics have important influences on
model specifications. Properties of the variables
that were considered when developing the causal
diagram from the SEMM are given in Table 2.
Examinations focused on (a) scales of measure-
ment, (b) distributions of values, missing values,
and outliers, and (c) bivariate relations with other
variables included in the diagram.

(c) Consideration of appropriate model complexi-
ty.—In small sample studies, there can be a
strong tension between ambitions and the need
for simple models. A small number of samples
will only permit reliable estimation of a limited
number of parameters. The degree of confidence
can influence decisions about model complexity

as well. When there is strong theoretical knowl-
edge, smaller samples can be tolerated. When
uncertainty is high, larger samples are needed.
Decision rules in this case are not hard and fast.
In our wetland study, we felt it was very
important to keep the model as simple as
possible while accomplishing our most impor-
tant objectives.

In striving to manage model complexity, we
decided to include only a minimum number of
variables in our SE model. Regarding human
activities, we eliminated the variable for the
degree of habitat alteration from inclusion in
the modeling process because, while of impor-
tance to wildlife, it does not seem essential to
understanding the three key biological responses
being modeled (or at least does not appear to
contribute any unique understanding of effects
on the key biological responses). The other four
variables that were components of the HDI
appear to be sufficient measures of the nodes in
the causal diagram and necessary to include for
our purposes. We also chose to model only three
key biotic responses, Typha cover, Sphagnum
cover, and native species richness. To represent
the eutrophication mediation process, we select-
ed water conductivity over pH. These two
indicators are highly correlated and among the
two, conductivity is more readily interpretable in
this case (since Sphagnum is known to produce
organic acids, and can thereby have a causal
effect on water pH). It is also known that pH can
fluctuate on a diurnal basis due to metabolic
influences (Wetzel 2001). Based on the strength
and linearity of bivariate relations with a
measure of community hydric affinity, we select-
ed the duration of flooding (proportion of time
soil surface inundated) as our indicator of critical
hydrologic alteration.

Since sampling was not conducted relative to
known environmental gradients, important co-
variates to control for were not obvious. Because
covariates were not explicitly included in the
model, examination of correlations among errors
in the SE model is particularly important for
finding their implicit effects and to avoid
backdoor relationships that might bias the
estimation of causal effects (Pearl 2012).

A measure of beaver activity was considered
for inclusion in SE modeling. We chose to omit it
in this first analysis for two reasons. One, the

v www.esajournals.org 28 August 2012 v Volume 3(8) v Article 73

SYNTHESIS & INTEGRATION GRACE ET AL.



measures of beaver activity are complex and not
reducible to a single variable. Some sites have not
had beaver in recent years, others have active
beaver, and a third group has had beaver
abandon their lodges at some (various) time in
the past several years. To avoid slipping into an
unhelpful level of model complexity, we chose a
simpler modeling option. Based on the causal
diagram, we represented the hypothesized causal
chain of land use to beaver to flooding using a
direct arrow from land use to flooding. Thus, our
SE model can be considered to be a reduced-form
model relative to the causal diagram.

(d) Consideration of the merits for including latent
variables in the SE model.—It could be useful in
bioassessment modeling to include latent vari-

ables to represent biotic responses more general-
ly. Eutrophication and hydrologic alterations can
be expected to invoke a suite of biotic responses.
That said, the small sample size in this study
motivates us to keep our SE model as simple as
possible and include only a minimum number of
biotic responses. We relied on results from a
multimetric indicator screening method that
identifies the minimum set of metrics to repre-
sent human disturbance effects (Schoolmaster et
al. 2012). As a result, we were able to select three
key responses to the effects of human activity,
thereby making it easier to keep our model
simple. For the purposes of illustrating a broader
range of modeling options, we ignore our own
cautions about maintaining the simplest model

Box 3

Equation specifications for final SE model. Variables were assigned codes and numbers for
denoting equation coefficients as follows: land use, surr (var 1); buffer intrusion, buff (var 2);
hydrologic alteraction, hyd (var 3); soil disturbance, soil (var 4); flooding duration, flood (var 5);
water conductivity, cond (var 6); native species richness, natr (var 7); Sphagnum cover, sphag
(var 8); Typha cover, typha (var 9). R code for implementing the final model is given in the
Supplement.
Buffer intrusion:
buff[i] ; dbin(buff.hat[i],n.buff )
logit(buff.hat[i])  b2.0 þ b2.1*surr[i]
Hydrologic alteration:
hyd[i] ; dbin(hyd.hat[i],n.hyd)
logit(hyd.hat[i])  b3.0 þ b3.1*surr[i]
Soil disturbance:
soil[i] ; dbern(soil.hat[i])
logit(soil.hat[i])  b4.0 þ b4.1*buff[i]
Flooding duration:
flood[i] ; dbin(flood.hat[i],n.wet)
logit(flood.hat[i])  b5.0 þ b5.1*hyd[i] þ b5.2*surr[i]
Water conductivity:
cond[i] ; dnorm(cond.hat[i],tau.cond)
cond.hat[i]  b6.0 þ b6.1*soil[i] þ b6.2*surr[i]
Native species richness:
natr[i] ; dpois(natr.hat[i])
log(natr.hat[i])  b7.0 þ b7.1*flood[i] þ b7.2*surr[i]
Sphagnum cover:
sphag[i] ; dbin(sphag.hat[i],n.sphag)
logit(sphag.hat[i])  b8.0 þb8.1*cond[i] þ b8.2*flood[i] þ b8.3*hyd[i] þ b8.4*soil[i]
Typha cover:
typha[i] ; dnorm(typha.hat[i],tau.typha)
typha.hat[i]  b9.1*cond[i] þ b9.2*step(cond[i]-psi.typha)*(cond[i]-psi.typha)
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structure later in the paper when we return to
consider latent variable modeling possibilities.

Step 6: Selection of estimation method.—In our
evaluation of Acadia wetlands, we chose to use a
Bayesian approach based on MCMC procedures
implemented in WinBUGS via the R program (R
Development Core Team 2008). Two major
motivations drove this choice. First, the number
of samples available for Acadia wetlands is small
relative to the needs of matrix-level methods. For
the initial model examined (Fig. 6) 16 pathways
are specified, giving a ratio of samples to paths of
2.3. For maximum likelihood estimation we
would prefer a minimum of five samples per
parameter in most cases (though an even higher
ratio would be desirable). Second, the objectives
of our study include probabilistic reasoning and
prediction. For the estimation of path relations,
the linear methods and their extensions that are
available in commercial software packages may
be suitable approximations. However, predicting
changes in the posterior distributions of quanti-
ties, such as Typha abundance, may benefit from
greater flexibility in specification choices.

Step 7: Specification of candidate SE models.—
Having decided on the graph (G) to use in our
initial SE model (Fig. 6), the next task is to specify
the functional forms for the linkages and the
response forms for the variables (F ). Our purpose
in this paper is to present general modeling
guidelines, not to develop an exposition on
statistical forms. For this reason, we simply
summarize the functional forms in Box 3 and
provide references to the less common ones. For
a general treatment of the subject, one can
consult (Gelman et al. 2004, Gelman and Hill
2007, Ntzoufras 2009). Our SE model includes
eight endogenous variables, and requires eight
distributional descriptions, one for each response
variable. The three endogenous disturbance
variables, soil disturbance, buffer intrusion, and
hydrologic alteration, were all estimated based
on professional judgement. As is typical for such
measurements, the data are rank order categor-
ical responses, in this case with four levels (0–3).
Despite their similarity as ordinal measures,
detailed examination of the data and the rela-
tionships with their exogenous driver, intensity
of land use, led us to model them in different
ways. The response forms for human disturbance
variables were as follows: buffer intrusion was

modeled as a proportional odds (Ntzoufras 2009,
Agresti 2010), as was hydrologic alteration, and
soil disturbance was modeled as a binary
Bernoulli response. Duration of flooding was
modeled as a proportional odds response, water
conductivity as a log-linear response, Typha as a
threshold response with a single changepoint
(Muggeo 2003), Sphagnum as a proportional odds
response, and native richness as a Poisson
response.

Step 8: Estimation, model evaluation, and respeci-
fication.—As stated above, estimation was per-
formed using WinBUGS (Lunn et al. 2000)
implemented through the R package R2winbugs
(Sturtz et al. 2005). Implied conditional indepen-
dences in the SE model were examined graphi-
cally as an initial step. To accomplish this,
residuals were calculated and plotted. A few
select results are shown in Fig. 7 to illustrate the
process. In Fig. 7 we show the relationships
observed between residuals for four of the
endogenous variables and the exogenous vari-
able Land Use. Measures of association were
calculated for these relationships to quantify the
linear relationships. However, the ultimate deci-
sion whether to include additional linkages in a
revised model was based on evaluation of
parameter significance for included links. Using
this approach, evidence to support the inclusion
of several new paths in our SE model was found.
These new paths are highlighted in Fig. 8, the
revised causal diagram, by showing them as
dotted lines.

With paths added and the model reestimated,
no indication of additional missing linkages was
found. This included an evaluation of residual
correlations among the three biological response
metrics. At this point, all parameters were
evaluated to determine whether there was a
basis for model simplification (i.e., whether some
processes/links were ignorable). It was deter-
mined that four paths in the model could be
eliminated without loss of explanatory power, (1)
the link from buffer intrusion to hydrologic
alteration, (2) the link from duration of flooding
to Typha cover, and (3) the links from Typha cover
to Sphagnum cover and (4) native species richness
(Fig. 8). R code showing the implementation of
the final model is given in the Supplement.

Step 9: Discoveries, quantities, and queries.—We
refer to the revised SE model as the provisional
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Fig. 9. Final structural equation model. Path coefficients are standardized using an adaptation of the range

standardization method of Grace and Bollen (2005) and estimated using queries (see text and Supplement for

further description).

Fig. 8. Revised causal diagram (compared to the initial causal diagram in Fig. 5). Links represented using

dotted lines are additions to the diagram based on discovered relationships. Question marks indicate linkages not

found to be important in the analysis of the wetland data available.
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model, accept it as our best model based on
current information, but leave open the possibil-
ity that further information could lead to
modifications. As mentioned earlier, the func-
tional forms specified in the provisional model
are given in Box 3. Results obtained from
examining the initial model and creating the
provisional model are referred to here as
discoveries, quantities, or queries. Regarding
our discoveries, we interpret the additions of
new linkages to our SE model as provisional
discoveries of processes previously unanticipated
(Fig. 9). All of these new connections can be
classified as examples of ‘‘partial mediation.’’
Our initial causal diagram hypothesized that
water conductivity and measurements of the
duration of flooding would be sufficient media-
tors to explain all of the effects of human
activities on the biological responses examined.
Clearly, that is not the case, as evidence for three
additional mediating mechanisms was found.
Controlling for duration of flooding, native
richness was still found to be lower in areas
with higher intensities of land use. Reference to
the causal diagram (Fig. 8) shows that it is
possible that either part or all of this effect is
through influences on beaver. Further studies
will be required to gain more clarity on what

mediates the additional responsiveness of rich-
ness to land use. The other two additional
mechanisms relate to lower Sphagnum cover
where soil was disturbed and where hydro-
periods were shortened. These results imply that
Sphagnum is sensitive to human impacts through
numerous mechanisms. Thus, it appears inter-
vening for the purpose of protecting or restoring
Sphagnum will be challenging. Furthermore, the
mediators of the direct paths from soil distur-
bance and hydrologic alteration are unknown at
present, implying the need for further research.
Our discovery of a direct link between land use
and native richness likewise adds to our uncer-
tainty about how we would fully intervene to
reduce human impacts on species diversity,
though we could compute the benefit of short-
ening the duration of flooding by itself.

Quantitative estimates of parameters as well as
the variation in their estimated values provide an
additional body of important information ob-
tained from the analysis (Table 3). The parameter
estimates in their raw units are the most
fundamental quantities produced by the estima-
tion process. These are used extensively in the
various queries that can be made. Quantities that
represent variation in our estimates, such as
standard deviations and other computations

Table 3. Parameter estimates for final SE model (Fig. 8). Parameters correspond to those given in Box 3.

Parameter Mean SD 2.5% Median 97.5%

b2.0 �3.102 0.5396 �4.267 �3.066 �2.152
b2.1 2.44 0.4101 1.705 2.417 3.308
b3.0 �1.598 0.2167 �2.037 �1.593 �1.189
b3.1 1.139 0.1658 0.8235 1.136 1.473
b4.0 �5.003 1.731 �9.076 �4.743 �2.378
b4.1 2.006 0.7059 0.8682 1.922 3.619
b5.0 �1.352 0.02952 �1.41 �1.352 �1.295
b5.1 0.3711 0.01383 0.3441 0.3712 0.3985
b5.2 0.1696 0.02521 0.1206 0.1695 0.2191
b6.0 1.805 0.04075 1.725 1.805 1.886
b6.1 0.222 0.106 0.01447 0.2219 0.4313
b6.2 0.2267 0.0401 0.1469 0.2269 0.3058
b7.0 3.993 0.03813 3.918 3.993 4.067
b7.1 �0.002436 2.89E�4 �0.003006 �0.002435 �0.00187
b7.2 �0.1641 0.03585 �0.2352 �0.1639 �0.0945
b8.0 3.646 0.2783 3.1 3.645 4.194
b8.1 �1.133 0.1488 �1.423 �1.133 �0.8408
b8.2 �0.004445 3.718E�4 �0.005179 �0.004443 �0.0037
b8.3 �0.08306 0.02688 �0.1359 �0.08307 �0.0308
b8.4 �0.5694 0.1229 �0.8116 �0.5693 �0.3302
b9.1 0.04522 0.06729 �0.124 0.05807 0.1453
b9.2 1.354 0.3493 0.8161 1.301 2.201
psi.typha 1.901 0.1897 1.532 1.92 2.236

Note: Ninety-five percent credible intervals do not include zero for all parameters except for the initial slope (parameter b9.1)
in the change-point model for Typha.

v www.esajournals.org 32 August 2012 v Volume 3(8) v Article 73

SYNTHESIS & INTEGRATION GRACE ET AL.



from the posterior distributions, give us the
building blocks for computing the degree of
confidence we have in our estimated means and
medians as well as conclusions drawn from
various queries. Summaries of fit between pre-
dicted and observed scores can also be seen as
summary quantities (i.e., the R2s in Fig. 9).

As stated earlier, queries can be used to
summarize our results as well as to consider
hypothetical situations. For example, a common-
ly reported summary of findings is the standard-
ized path coefficient. Scientists often place
emphasis in presentations on standardized coef-
ficients because of their intuitive appeal. In the
linear Gaussian case, standardized path coeffi-
cients can be derived simply from the unstan-
dardized values. However, in models possessing
more complex specifications, such as in the
example presented here, classical standardized
coefficients are not simple to interpret or com-
pare. Therefore, we used a query approach to
estimate quantities equivalent to standardized
coefficients. To accomplish this, we developed
two scenarios for each link in the model, one
using the minimum value of a predictor and
another using its maximum value. We then
computed the changes in response associated
with changing a predictor from its minimum
value to its maximum. Computed results were
then standardized by the maximum ranges of the
response and predictor variables (Grace and
Bollen 2005). The derived parameters obtained
in this fashion (shown in Fig. 9) are predictions of
the responsiveness of a variable relative to its
maximum if one were to vary a predictor from its
minimum to maximum value while holding all
other predictors at their mean value. These
represent a form of standardized path coefficient
for comparing the signal strengths among paths.

A query of interest in this study relates to the
question of what might be done to limit the
development of Typha in the protected wetlands.
To facilitate our presentation, we show the
modeled relationship between water conductiv-
ity and Typha cover in Fig. 10. Evaluation of this
relationship using a change-point model (one
that postulates a threshold at which the slope of
the response changes) revealed evidence for a
threshold response. The median change-point
estimate was a conductivity of 1.9 on a log10
scale, or approximately 80 meq, with a credible

interval from 32 to 172 meq. Below the threshold,
Typha appears to have difficulty colonizing (with
three wetlands as clear exceptions) and the
estimated slope of relationship is effectively zero.
Above the threshold, nearly all the wetlands have
been invaded by Typha and its abundance rises
rapidly with increasing conductivity.

We can pose the query of what would be
predicted to happen to Typha if we were to
intervene on the sources of variation in conduc-
tivity. We illustrate our hypothetical intervention
using a reduced-form representation of the
predicted net effects of human activities on Typha
invasion and abundance (Fig. 11). Our model for
the observed system assumes that human activ-
ities lead to increases in water conductivity
(including increases mediated through soil dis-
turbance), which in turn leads to an increase in
Typha. We present the results for three queries
posed as scenarios. Scenario 1 is the no interven-
tion option, which simply predicts for the larger
population of wetlands on Mount Desert Island
the relationship between water conductivity and
Typha abundance. Scenario 2 represents the case

Fig. 10. Illustration of change-point (threshold)

relationship between Typha cover (raw units between

0 and 100 percent) and surface water conductivity

(Log[lS.cm�1]). Change-point relationships represent

ones that include thresholds where response slopes

change abruptly. Analysis yielded an estimated thresh-

old of 1.91 (95% CI: 1.4–2.2). Initial slope (below

threshold) not significantly different from zero.
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where wetlands are protected from high conduc-
tivity inputs resulting from human activities. For
the sake of simplicity, we assume that there are
ways of accomplishing this through all mediating
processes, including soil disturbance. If we refer
to our three-variable submodel as Model M, a
logical implication of Model M is that upon
intervention, Models Mx1 or Mx2 will apply,
depending on the degree of control we can
impose on conductivity. Here we recognize the
two possibilities of partial (Scenario 2) or
complete (Scenario 3) control of conductivity. In
Model Mx1, we represent an intervention where
the values of water conductivity are now
independent of levels of human activities, per-
haps through the use of systems that trap
nutrients in surface water runoff. In Model Mx2,
we represent an intervention where the values of
water conductivity are independent of human
activities and also independent of other sources
of variation, perhaps through the use of systems
that directly regulate water quality. In the case
where Model Mi ¼ Mx1, we can represent the
post-intervention distribution of Wi that is
predicted from the pre-intervention model M as
follows:

PMðWijdoðH ¼ 0ÞÞ ¼ PMx1ðWiÞ: ð3Þ

In the case where Model Mi ¼ Mx2, we can
represent the post-intervention distribution of Wi

that is predicted as:

PMðWI jdoðH ¼ 0Þ and ðUW ¼ 0ÞÞ ¼ PMx2ðWIÞ: ð4Þ

Thus, if our model is an adequate causal model,
we should be able to predict the distribution of
values for Typha for the two interventions. Our
goal for the computation will be to determine
how much of the distribution of Wi will fall
below the distribution for the threshold for an
effect on Typha. Fig. 12 shows the observed
distribution of Typha abundances, along with the
predicted conductivity distributions for the two
scenarios. As we can see, our queries for the two
intervention scenarios predict moderate and
major reductions in Typha abundance. Whether
these are accurate predictions is a testable
implication of our SE model. Finally, we note
some other logical (and testable) implications of
the observed system model (M). Most conspicu-
ous is that human activities (including land use,
buffer intrusions, and soil disturbance) that do
not lead to changes in water conductivity will
have no effect on the probability of Typha
invasions or its abundance, a sometimes over-
looked point.

Fig. 11. Queries about predicted effects of interventions on water conductivities and cattail abundance.

Scenario 1 is status quo; Scenario 2 is elimination of the human influences of buffer intrusion and soil disturbance;

Scenario 3 is reduction of water conductivity to reference conditions (presumably through water treatment). The

‘‘O’’ variables refer to unknown ‘‘other’’ causes of variation. The operator ‘‘do(H¼0)’’ refers to reducing the effects

of land use and soil disturbance on conductivity to 0. The operator ‘‘do(OW¼ 0)’’ refers to reducing the effects of

other (unknown) factors on conductivity to 0.
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DISCUSSION

The wetlands of Mount Desert Island
and Acadia National Park

The guidelines proposed in this paper provid-
ed a system for learning about and quantifying
the different pathways by which human activi-
ties on Mount Desert Island may impact the
biotic properties of wetlands through abiotic
modifications. Starting from an initial set of
causal assumptions/hypotheses (Box 2), we first
considered whether the data indicated that there
were omitted linkages in our initial model.
Residual relationships between variables sug-
gested three candidate links for further consid-
eration, one between soil disturbance and
Sphagnum, one between hydrologic alteration

and Sphagnum, and one between land use and
native richness. For all three of these connections,
we hypothesized a directed relationship (rather
than an undirected association) involving effects
of human activities or abiotic condition on
biological conditions. We incorporated the addi-
tional predictors into submodels for Sphagnum
and native richness and recalculated parameters.
We judged addition of linkages to our model
based on 95% credibility intervals for the terms in
the submodels. All three of the detected residual
relationships were found to be supported by the
data. This led us to a revised causal diagram for
the system (Fig. 8). Since the added linkages were
not in the initial model, some discussion of their
possible interpretations is called for.

The direct path from soil disturbance to

Fig. 12. Distributions associated with scenarios described in Fig. 11. Scenario 1: Observed distributions of

values of conductivity, in Log(lS.cm�1) units, and cattail abundance, in Log(percent coverþ 1) units. Scenario 2:

Predicted distributions for cases where effects of human activities are eliminated (Model Mx1 in Fig. 11). Scenario

3: Predicted distributions for cases where conductivity is reduced to reference conditions (Model Mx2).
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Sphagnum indicates an influence of this physical
alteration that is independent from an effect
mediated through water conductivity. Further
research is needed to determine whether this is
simply physical damage to the plant community
or something else. The direct path from hydro-
logic alteration to Sphagnum further indicates a
mechanism that does not involve the duration of
flooding. Perhaps this results from ditches and
dams that interrupt sheet flow and represent
physical limits to Sphagnum, though again the
explanation for this effect requires further re-
search. A link between intensity of land use and
native richness was also unanticipated. It is quite
possible this linkage relates to historical influ-
ences not accounted for in the data. We have no
good hypotheses to explain this finding at
present. Collectively, these discovered linkages
argue for the measurement of more potential
mediators that could provide causal explanations
for the mechanisms involved.

Aside from discovering evidence for additional
mechanisms whereby human activities lead to
reductions in Sphagnum and native richness,
several hypothesized mechanisms were not
supported by the available data. This result, by
itself, does not necessarily mean a different
sample of wetlands might not evidence the
mechanisms driving the predicted pathways,
but we must allow for the possibility that the
paths not supported by this dataset may be
unsupported generally. In developing a revised
causal diagram for the system, we indicate the
paths drawn into question (Fig. 8). One process
not supported in this case is an effect of buffer
intrusion on the degree of hydrologic alteration.
As indicated in Box 2, we assumed that when
human developments extend into the buffer of a
wetland, we might expect additional attempts to
stabilize water levels, such as the installation of
bulkheads. While this might be true in other
locations, it does not appear to be a characteristic
feature of the wetlands sampled.

Another assumption/hypothesis not borne out
by the data is a promotion of Typha by
lengthening the hydroperiod. In earlier work on
wetlands in the Everglades of Florida, Newman
et al. (1996) showed experimentally that both
increased flooding and nutrients stimulated
Typha growth. It may be that further, nonexper-
imental findings by Newman et al. (1998)

provide some clues that could refine our expec-
tations for Typha at Mt. Desert Island. Newman et
al. (1998) concluded based on comparative
surveys that responses by Typha to lengthening
of hydroperiods depended on sufficient nutrient
availability. Thus, for the oligotrophic situation at
Mt. Desert Island, we may only observe an effect
of increased flooding when conductivities are
high.

Typha is generally considered to be of concern
in part because of its ability to competitively
displace other species when conditions are
eutrophic (Keddy 1990, Newman et al. 1996). In
this study, we did not find any evidence to
suggest a competitive suppression of Sphagnum
or native species diversity where Typha abun-
dance was greater. It may simply be that Typha
levels were not high enough in this study to
detect such suppressing effects. Therefore, we
continue to expect that a negative impact of
Typha on Sphagnum and other native species are a
possibility in future studies.

Quantification of the relationships in our
revised model presents a picture of the network
of influences connecting the intensity of land use
to biotic conditions (Fig. 9). Variance explanation
for response variables (child nodes) was found to
be good overall. In particular, the three biological
properties were well explained, with R2s ranging
from 60% for Typha to 78% for native richness. A
high level of variance explanation is not a
required outcome for a successful model. Some
phenomena are inherently stochastic and valid
models may still show low variance explanation.
Further, a high level of variance explanation is
not a guarantee that we have a good causal
model. All that said, since our ambitions for this
study include being able to make useful pro-
spective statements, good variance explanation is
helpful. We do not wish to imply here that
further predictive refinement would not be
desirable, only that we are encouraged by these
initial findings.

As described in the Methods section, we used
queries to obtain standardized estimates of
parameters (shown in Fig. 9) from the unstan-
dardized parameters (Table 3). These coefficients
represent the predicted responses in child nodes
when a parent node is varied across its observed
range in the study, where effects are proportional
to the responding variables’ ranges. Classic
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standardized coefficients (which are not ideal in
the current model because of the complex
specifications) represent predicted responses in
units of standard deviations. In both cases,
standardized coefficients are intended to convey
predictive sensitivities in units that are at least
somewhat comparable across pathways, though
we recognize that standardized coefficients can
be misinterpreted. That said, we can get a sense
of information flow through the network from
the coefficients. In this case, it is clear that the
intensity of land use has a variety of kinds of
influences on other parts of the system. Looking
at the important mediator water conductivity, we
can see that human impacts independent of those
through buffer intrusion and soil disturbance are
very important. We suspect this effect, which is
represented by the direct path from land use to
conductivity, has to do with mineral and nutrient
inputs carried by channelized water flows (e.g.,
through drainages and culverts). We cannot rule
out the importance of occasional extreme rainfall
events, as extreme events are often the conveyors
of major change. The other key mediator,
duration of flooding, appears to be primarily
influenced through recognized alterations in
hydrology. The survey instrument used to score
degree of hydrologic alteration specifically con-
siders ditches, tiles, dikes, weirs, stormwater
inputs, point sources, road beds, railroad tracks,
and dredging activities. It appears that there is
some other connection between land use and
duration of flooding (indicated by the direct
path), but this is less substantial. We can see that
having a measure of the duration of flooding (or
a surrogate, such as the average hydric affinity of
the vegetation) is important for our modeling
effort because duration of flooding is the one
node not well predicted; therefore, absorbing this
node (i.e., modeling without this variable) would
lead to a substantial loss of information. Finally,
it is apparent that Sphagnum responds to a
variety of processes and no one of these is of
dominant importance. In contrast, Typha abun-
dance is explained reasonably well by a single
predictor, conductivity.

Because of its importance to conservation
management, we explored in greater depth the
chain of effects controlling Typha (Figs. 10–12).
Further work is needed to confirm our tentative
conclusion that there is a threshold requirement

for Typha response to conductivity. We estimated
a change-point log10 conductivity of 1.91 (95% CI
¼1.51–2.45). One wetland showed a substantially
higher level of Typha than expected from its water
conductivity level. Possible reasons for this are
still under investigation, though beaver activity
is suspected to play a role. Scenarios based on
two kinds of interventions were explored using
queries based on the estimated coefficients (Fig.
11). Further work will be needed to evaluate the
practical remedies that are possible under field
conditions, though at a minimum controlling soil
disturbance adjacent to wetlands might be
considered. Monitoring of water conductivity
levels in wetlands and in inflows should give
further information on management options.
Simulating the potential consequences of inter-
vening on the system suggests a considerable
potential for avoiding Typha invasions if conduc-
tivities (and the nutrient inputs they imply) can
be controlled (Fig. 12).

Overall, the results are consistent with the a
priori expectations that key biotic conditions can
be influenced through eutrophication and alter-
ation of hydroperiods (Fig. 4). While this general
expectation is supported, it is also clear that
many of the details deserve further study. The
model results suggest focused questions for
further investigation. In particular, gaining a
better understanding of the direct link between
land use and conductivity in the model seems
quite important. Developing a better understand-
ing of how beaver fit into the system is also a
conspicuous need. Aside from those needs for
further study, the model can be viewed as a set of
predictions that encourage further evaluation
and refinement of our model of this important
natural resource.

Updated guidelines for SEM
Our methodological objective in this paper has

been to present an updated set of guidelines for
SEM. Standard descriptions of the SEM process
generally recommend the specification of the SE
model(s) as the first step in the modeling process
(Schumacker and Lomax 2004:57, Kline 2010:92).
More advanced discussions of the subject (Bollen
1989: Chapter 3, Kaplan 2009: Chapter 10)
provide a greater depth of advice for the
numerous things that warrant consideration in
order to specify an initial SE model that matches
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theory and represents hypotheses about the data-
generating process. All of these treatments
recognize that this is a complex decision process.
Very few provide a detailed, explicit set of
criteria for SE model specification and it often
seems implied that previous SEM studies will
have provided an a priori model for the current
application. Grace and Bollen (2008) and Grace et
al. (2010) have recommended beginning the
modeling process with a SEMM. This pre-
specification step is designed to strengthen the
linkage between theory and models, but also to
drive applications to a more explicit and careful
consideration of specifications that involve latent
variables. Generally, however, initial SE models
are developed through an intuitive and nonex-
plicit process. In this presentation we have been
motivated to be more explicit in providing
suggestions that might guide the modeling
process. A major influence on our presentation
has been the ambition of incorporating new ideas
relating to causal analysis (Pearl 2009), Bayesian
implementations (Lee 2007), and probabilistic
predictive networks (Kjaerulff and Madsen 2008)
into our guidelines.

As a result of the perceived limitations of
existing guidelines and the advances in quanti-
tative modeling that have occurred in the past
two decades, we have incorporated new devices,
such as causal diagrams, and new principles for
the investigation of causal relations into our
recommendations. We have emphasized the use
of graphical modeling methods for model eval-
uation, both because of their generality and
because of the support they provide for explicat-
ing causal assumptions. Collectively, these up-
dated guidelines describe a more general
approach to SEM than currently practiced,
subsuming the special case of the classic SE
model

g ¼ Cnþ Bgþ f;

where models are described as a series of latent
regressions (regressions between latent vari-
ables), within the broader framework of the
graphical model (Eq. 1)

N ¼ G;X;Ff g;

where models are described as networks com-
prising graphs, variables incorporated in those
graphs, and functional relations that link the

nodes in the network. Our example involved a
somewhat complex specification employing
Bayesian MCMC methods. A key motivation in
our presentation has been to demonstrate how
queries can be used for a variety of purposes but
especially how they open the door to prospective
investigations that explore the quantitative im-
plications that follow from the parameter esti-
mates.

We chose a complex example in order to
support a more detailed discussion of modeling
possibilities. This is not to suggest that this level
of complexity will be typical for most SEM
studies. In fact, we would rate this example as
an unusually complex one in terms of the linkage
functions, one that cannot be implemented in any
of the commercial SEM software packages
available at this time. Many applications of
SEM may not involve all of the steps we present
in the guidelines, but considering them provides
an enhanced support system compared to previ-
ous modeling guidelines. Similarly, choosing a
Bayesian estimation approach for this example
permitted us to develop a more complex speci-
fication for our model. However, Bayesian
specification and estimation of SE models comes
at a significant price in terms of the background
knowledge required to specify the links, experi-
ence needed to do the analysis, and the time it
takes to explore possible models and misspecifi-
cations.

The use of new devices, such as the causal
diagram, deserves special mention, since its
utility may not be obvious to those accustomed
to statistical modeling. Its utility may be most
easily grasped if one considers a case where we
have a causal diagram prior to conducting an
empirical investigation. If we have a well-
developed diagram, it can help us to design the
data collection enterprise to allow us to be both
efficient and effective in achieving specific causal
modeling objectives. The causal diagram also
facilitates the treatment of causal analysis, as
described above. Recent demonstrations of its
potential use and contributions in epidemiology
can be found in Greenland et al. (1999). Also
deserving of special mention as a new emphasis
in our guidelines is the use of queries. While this
idea is not new, complex models will require
queries in order to summarize their retrospective
findings (those that draw inferences about what
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caused the data characteristics). Using queries
automatically opens up the process for prospec-
tive analyses that consider potential future
observations. Again, to our knowledge, none of
the existing commercial software packages pro-
vide support for prospective explorations that
emerge from the parameter estimates. We feel
that SEM applications have generally failed to
take full advantage of the opportunity to explore
possible implications of the results obtained with
prospective analyses. Extending the SEM process
to routinely consider implications of results more
completely might be one of the most important
outcomes from use of the proposed guidelines.

Our presentation in this paper is limited in a
number of ways. One of the most conspicuous is
the lack of consideration of models that include
latent variables, especially since latent variable
modeling is a central capability of SEM. Strictly
speaking, latent variables are variables for which
we have no measurements, but whose influences
on other variables need to be accounted for in a
model. Modeling with latent variables is a rich
and complex topic and we defer the reader to
Grace et al. (2010) for a recent and more detailed
discussion. It is worth mentioning here, however,

that the degree of abstraction varies when it
comes to the use of latent variables. For example,
we might consider that some of the nodes in our
model are subject to measurement error. It is
possible to take steps when collecting data to
obtain estimates for a node that would permit an
estimate of the ‘‘true’’ latent value of a node
based on multiple observed values. We might, at
that point, develop a version of our model in
which each node is represented by a latent
variable and one or more observed indicators.
Taking latent variable modeling a step further,
we might hypothesize that our biotic response
measures oversimplify the situation to an unre-
alistic level. We might consider that Typha,
Sphagnum, and native richness are incomplete
representations of the more general responses
they represent. From this, we could create a
model that incorporates latent nodes to represent
these more general responses to human devel-
opment (e.g., Fig. 13). Such a model could be
used to provide a more complete explanation for
the multitude of correlated biotic responses to
human activities that are observed (Table 2). For
the purposes of limiting this already long paper,
we defer further discussion of dealing with latent

Fig. 13. Alternative structural equation model containing latent variables to represent the hypothesis that

generalized system responses (Eutrophication, Bog Development, and Diversity) produce the observed biological

metric values. This model is only shown for illustration purposes in this paper.
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variables in a graph-theoretic implementation of
SEM to another time.

Conclusions
The use of statistical tools along with scientific/

theoretical knowledge to develop causal infer-
ences is a complex business. Statistical analysis
alone is not sufficient for the task and a system
for incorporating and explicitly considering
causal assumptions and their testable implica-
tions is an additional requisite. At the same time,
models are only caricatures of the real world and
the variety of modeling possibilities is great,
demanding both a flexible capacity for modeling
and sufficiently developed guidelines that the
modeling process is more science than art. It is
noteworthy that the aspirations of the field of
artificial intelligence are bringing a greater rigor
to structural equation modeling. This push is
being driven by the realization that artificially
intelligent systems require a capacity for causal
analysis and also that structural equations are the
natural language for that causal analysis (Pearl
2012). Parallel to this fusion of ideas are two
trends, one being advances in the capability of
statistical modeling and another the desire to
develop multivariate models that are better
suited to the understanding of systems and the
prediction of their behavior. This latter trend is
supported by the evolution of graphical model-
ing methods that permit both the analysis of
networks and the prospective application of
probabilistic knowledge. The guidelines present-
ed in this paper are intended to integrate ideas
from all these domains under a graphical
modeling paradigm so as to lead to a more
efficient pursuit of causal relationships in sys-
tems and to contribute to what we believe will be
a third generation of SEM that is both more
rigorous and that serves a broader set of
purposes.
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