The neuronal cytoskeleton

Neurons
- unique architecture with distinct and diverse morphology
 - branching of axon and dendrites
- specialized structure closely related to function
 - electrical signaling
 - synaptic transmission
 - transport
- structural changes with:
 - age, experience, neuronal activity, injury

Neuronal cytoskeleton
- essential role in these aspects

The cytoskeleton
- functions as a highway for transport and a framework for the cell.

3 structures
- Actin filaments (microfilament)
- Microtubules
- Intermediate filaments
The neuronal cytoskeleton

-longitudinal filaments
1. Microtubules (diameter 25 nm)
2. Neurofilaments (d= 10nm)
 extensive crosslinking

-cortical network
Actin microfilaments (d= 8nm)
under the surface membrane
enriched in the growth cone

Anchoring proteins to actin filament
(Fig. 13, page 275)

The filaments: polymers of repeating subunits

<table>
<thead>
<tr>
<th>Filament</th>
<th>Monomer protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microtubules:</td>
<td>α- and β-tubulin (50 kDa)</td>
</tr>
<tr>
<td>Microfilaments:</td>
<td>actin (43 kDa)</td>
</tr>
<tr>
<td>Neurofilaments:</td>
<td>NF-H, NF-M, NF-L</td>
</tr>
<tr>
<td>(Neuronal intermediate filaments)</td>
<td></td>
</tr>
</tbody>
</table>
Microtubules

- Typically comprise 13 protofilaments
- Dynamic instability
 - GTP hydrolysis and depolymerization, Polarity
- Transport
- Microtubule associated proteins and microtubule motors
 - MAP1a/b - widely spread in axon and dendrites
 - MAP2a/b - Dendrite specific MAPs, major phosphoproteins in adult brain
 - Kinesin - present in microtubule containing cell, axonal transport
 - Dynein - transport of organelles or cytoskeletal elements

Microtubules (MT) in vivo

Stable and labile forms present

Multiple genes for α- and β-subunit

Polymerized in MT in a mixed form

Neuron type specific expression

Polarity
 - Axon: Fast growing end (Plus end) toward nerve terminals
 - Dendrite: Random

Posttranslational modification
 - α- subunit: tyrosination-detyrosination
 - C-terminus Glu-Tyr
 - Acetylated tubulin-more stable
 - β-subunit: tubulin kinase
Transport of macromolecules and organelles
Axonal transport and dendritic transport
Anterograde transport and retrograde transport

Fast and slow transport

Slow component A
0.2-1 mm/day
Slow component B
2-8 mm/day

Fast axonal transport
occurs along microtubules
ATP dependent motor protein activation
Kinesin: anterograde motor
Dynein: retrograde motor
Slow axonal transport

- Mechanism not clear: Motor proteins considered to be involved
- No apparent retrograde transport
- Slow component A: 0.2-1 mm/day
 - Cytoskeletal proteins: microtubule proteins, neurofilaments
- Slow component B: 2-8 mm/day
 - Actin, soluble enzymes

Neurofilaments: neuronal intermediate filaments

- NF-H (180-200kDa), NF-M (130-170kDa), NF-L (60-70kDa)
- N-terminal head domain
- A central α-helical coiled coil rod domain
- Dimerization domain
- C-terminal tail domain