I. Chromosomes, The Cell Cycle and Cell Division (Chapt. 9)

A. Eukaryotic Cell Cycle
 - M – nuclear changes – distribution of chromosomes
 - G1 – first gap
 - S – DNA replication
 1 chromosome = 1 centromere
 After replication each chromosome is composed of two sister chromatids

B. Controls of the Cell Cycle
 - Checkpoints
 - G1/S – Is cell large enough?
 - External signals
 Ex = PDGF
 - Is there damage to the DNA?
 - G2/M – are all chromosomes replicated and undamaged?
 - Factors controlling cell cycle
 - Cyclins and Cdns
 - Functions - complexes
 - Changes in concentration of cyclins

C. Eukaryotic Chromosomes
 - Chromosomes vs. chromatin
 - Nucleosomes
 - Histones
 - Additional levels of condensation

D. Mitosis
 - Formation of mitotic spindle
 - Disintegration of nuclear membrane
 - By phosphorylation of the nuclear lamina
 - Spindle fibers attach to the kinetochores
 - Spindle fibers are microtubules
 - Proposed mechanism for chromosome movement
 - Chromosomes at the equator of the cell
 - Division of centromere
 - Movement to the poles
 - Cytokinesis
 - Plant cells vs. animal cells
 - Phases during mitosis
 - Prophase
 - Metaphase
 - Anaphase
 - Telophase
 - Key events during each phase

E. Meiosis
 - Goal of the process
Two consecutive divisions
 Meiosis I – describe
 Meiosis II – describe
Compare with mitosis

F. **Terms to know**
 Centrosome
 Kinetochore
 Centromere
 Chromosome
 Sister chromatids
 Diploid (2n)
 Haploid (n)
 Homologous chromosomes
 Daughter chromosomes
 Tetrad
 Synapsis

II. **DNA and its Role in Heredity (Chapt 11)**
A. **Evidence DNA is genetic material**
 Transformation experiments
 Experiments using labeled phages (T2)
B. **Structure of DNA (Watson – Crick model)**
 Two chains of nucleotides coiled to form a double helix
 Chains run in opposite directions (anti-parallel)
 Backbone (sugar – phosphate) of each chain located on the outside
 Paired bases projecting toward center
 Diameter of double helix constant (2.0 nm)
 Bases pair purine – pyrimidines
 Complementarity rule (Chargaff’s rules)
 \[
 \begin{align*}
 A &\rightarrow T \\
 G &\rightarrow C
 \end{align*}
 \]
 Each chain of nucleotides has 5’ and 3’ ends
C. **DNA replication**
 Semi-conservative
 Experimental evidence
 Bi-directional starting from an origin
 One origin in bacteria
 Multiple origins in eukaryotes
 Problems of anti-parallel strands
 DNA polymerase III
 Polymerizes 5’ to 3’
 Template has to be 3’ to 5’
 Need for a primer
 Leading strand
 Lagging strand
 Okasaki fragments
DNA polymerase I
Role in replication
Describe events at the replication fork
RNA Primase
DNA polymerase III
Helicase
Other enzymes and their functions
Ligase
Topoisomerase
Function of ss binding proteins
DNA is threaded through a replication complex
Explain
Repair mechanisms
Proof reading
Mismatch repair
Excision repair
DNA sequencing
Polymerase Chain Reaction (PCR)

III. From DNA to Protein (Chapt. 12)
A. One Gene – One Polypeptide
Experimental evidence
B. Transcription
From DNA to RNA
RNA polymerase
Polymerizes 5’ to 3’
Copies only one strand
Initiation
Elongation
Termination
C. The Genetic Code
Triple
In mRNA – three bases = 1 codon = 1 amino acid
Redundant - no internal punctuation
Start = AUG
Stop = UAA, UGA, UAG
Code is “near” universal
Translation
mRNA
Code
tRNA
Adapter molecule
Anticodon
Wobble
Function aminoacyl-tRNA synthetase
rRNA
Ribosomes
Sequence of events in building a polypeptide
 Initiation
 Elongation
 P and A sites
 Peptide bond formation
 Translocation
 Termination
D. Post-translational events
 Chemical signals
 Destinations
 Modifications
 Proteolysis
 Glycosylation
 Phosphorylation
E. Mutations
 Chromosomal mutations
 Point mutations

IV. The Genetics of Viruses and Prokaryotes (Chap. 13)
A. Life cycle of bacteriophages
 Lytic
 Lysogenic (temperate viruses)
B. Animal viruses
 Life cycle
 Naked viruses
 Enveloped viruses
 Retroviruses (example: HIV)
C. Prokaryotes
 Genetic recombination
 Conjugation
 Auxotrophic bacteria
 Prototrophic bacteria
 Description of the process
 Transformation
 Description of the process
 Transduction
 Viruses as genetic vector
 Plasmids and transposable elements
 Definitions
 Plasmids as genetic vectors
 F factors
 R factors
 Regulation of gene expression
 At the transcriptional level
 Operon concept
Structural genes
Single promoter
Operator gene
Regulatory gene
Inducible operon
lac operon
 Describe how it works
Repressible operon
trp operon
 Describe how it works?
Increasing promoter efficiency
lac operon – CRP-cAMP control