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Seedling mortality in tree populations limits population growth rates and controls the
diversity of forests. To learn about seedling mortality, ecologists use repeated censuses
of forest quadrats to determine the number of tree seedlings that have survived from the
previous census and to � nd new ones. Typically, newly found seedlings are marked with
� ags. But � agging is labor intensive and limits the spatial and temporal coverage of such
studies. The alternative of not � agging has the advantage of ease but suffers from two main
disadvantages. It complicates the analysis and loses information. The contributions of this
article are (i) to introduce a method for using un� agged census data to learn about seedling
mortality and (ii) to quantify the information loss so ecologists can make informed decisions
about whether to � ag. Based on presented results, we believe that not � agging is often the
preferred alternative. The labor saved by not � agging can be used to better advantage in
extending the coverage of the study.

Key Words: Bayesian inference; Ecological statistics; Experimental design; Fisher in-
formation; Gibbs sampling.

1. INTRODUCTION

Forest diversity is limited by recruitment of new tree seedlings (Watt 1947; Grubb
1977; Pacala and Tilman 1994; Clark et al. 1999; Hubbell et al. 1999). Information on
seedling mortality is therefore critical to understanding how tree diversity is maintained in
forests. Furthermore, spatial and temporal variability in seedling mortality caused by such
factors as light levels, understory shrubs, and resource limitation is particularly important
because it contributes to patterns of forest composition. Therefore, a method that simpli� es
the collection and estimation of seedling mortality in varied microenvironmental conditions
would be valuable.

To learn about seedling mortality, ecologists conduct regular censuses of forest quadrats
to count seedlings that survived from the previous census and to locate new ones. Standard
practice is to � ag (mark with a unique identi� er) newly found seedlings and record which
previously found seedlings are still alive.
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This article considers the alternative of simply censusing seedlings and not � agging

each individual. Our goals are twofold. First, we develop a method for statistical analysis
of un� agged data and show what useful information can be extracted from the data in the
absence of � ags. Second, we quantify the information lost by not � agging so ecologists can
make well-informed decisions about whether to � ag. The model is explained in Section 2
and illustrated on a 5-year data set from the southern Appalachians (Clark, Macklin, and
Wood 1998) in Section 4. Information loss is quanti� ed in Section 3.

The advantage of not � agging is, of course, ease, which permits analysis of many more
quadrats. The disadvantages are threefold. First, un� agged data are uninformative about
age-speci� c mortality rates. Our methods categorize seedlings as either � rst year (new) or

older (old) seedlings and provide age-speci� c mortality rates only for those two categories.
More detailed age-speci� c rates are often unnecessary.

Second, elimination of � ags results in the loss of some information, even for our old and
new mortality rates. The simulations and calculations of Section 3 quantify the information
loss and show that not � agging is often a sensible alternative because the information loss
in each quadrat is well compensated by the gain in the number of quadrats that can be
censused. Moreover, experience shows that � ags are often lost from one census to the next.
Our calculations assume that no � ags are lost and therefore overstate the advantage of
� agging.

Third, elimination of � ags complicates the analysis because a seedling’s age is un-
known. This is precisely the point where information is lost and the analysis becomes more
complex. We use a Bayesian approach to account for the unknown age. Of course, such an
analysis could also be used in a � agged study when � ags are lost.

We apply the method to a 5-year data set from the southern Appalachians (Clark et
al. 1998), where we conducted annual censuses of new and old seedlings in 1-m2 quadrats
arranged along transects. Individuals were not � agged; we simply counted individuals of
each species in the two age classes. We use counts of red maple (Acer rubrum) todemonstrate

our analysis.

2. A PROCESS MODEL

A seedling’s survival probability is the chance that it survives from one year to the next.
Old and new seedlings can be identi� ed by the presence or absence, respectively, of bud scale

scars. Old and new seedlings have different survival probabilities but, roughly speaking,
the survival probability of old seedlings is not explained by age (Streng, Glitzenstein, and
Harcombe 1989; Jones, Sharitz, Dixon, Segal, and Schneider 1994). Therefore, we adopt a
model with two parameters of interest—pold and pn ew—survival probabilities for old and
new seedlings, respectively.

Let Oi;j and Ni;j be the numbers of old and new seedlings recorded in quadrat i in
year j. Ni;j represents new recruitment, which, for the moment, we do not model but take
as given. The numbers of old seedlings recorded in year 1, fOi;1g, are also given. Seedlings
are typically small enough not to be limited by mutual competition for physical resources;
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their survivals can reasonably be modeled as independent within a quadrat. Let Xi;j be the
number of old seedlings and Yi;j the number of new seedlings in quadrat i that survive from
year j to year j + 1. Let bin(n; p) be the binomial distribution with n trials and probability

p and bin(x; n; p) the probability mass function of bin(n; p) evaluated at x. Our model is

Xi;j ¹ bin(Oi;j ; pold ) (2:1)

Yi;j ¹ bin(Ni;j ; p n ew): (2:2)

When new seedlings survive, they become old seedlings. Thus, for j ¶ 2, Oi;j = Xi;j¡1 +

Yi;j¡1. For now, data from different quadrats and different years are assumed conditionally
independent of each other given pold and pn ew, but see Section 4.3 for year and quadrat
effects that induce dependence. Let Q be the number of quadrats and T the number of years
for which we have data. The full model for all the X’s and Y ’s is

Pr[fXi;j ; Yi;j gi = 1;:::;Q;j = 1;:::;T ¡1 j pold ; p n ew]

=

QY

i = 1

(

Pr[Xi;1 j pold ; p n ew] Pr[Yi;1 j pold ; pn ew]

£
T ¡1Y

j = 2

Pr[Xi;j j Xi;j¡1; Yi;j¡1; pold ; p n ew]

)

=

QY

i = 1

(

bin(Xi;1; Oi;1; pold )bin(Yi;1; Ni;1; pn ew)

£
T ¡1Y

j = 2

bin(Xi;j ; Oi;j ; pold )bin(Yi;j ; Ni;j ; p n ew)

)

: (2:3)

If seedlings are � agged then, when Oi;j is observed in year j , we also learn Xi;j¡1 and

Yi;j¡1 and the experiment is just a collection of many independent binomial observations

and statistical analysis is simple. But if seedlings are not � agged then, when Oi;j is observed,
we don’t know how many of those old seedlings in year j were old and how many were
new in year j ¡ 1, i.e., we do not observe Xi;j¡1 and Yi;j¡1. Some information is lost.

Although fXi;jg and fYi;jg are not observed, we can still draw inferences about pold

and p n ew from observations of fOi;j g and fNi;jg. To account for Oi;j seedlings in quadrat

i in year j , Xi;j¡1 must be at least Oi;j ¡ Ni;j¡1, so the lower bound on Xi;j¡1 is X m in
i;j¡1 ²

max(0; Oi;j ¡ Ni;j¡1). Similarly, the upper bound is X m ax
i;j¡1 ² min(Oi;j¡1; Oi;j). Thus,

Xi;j¡1 2 [X m in
i;j¡1; X m ax

i;j¡1] and Yi;j¡1 = Oi;j ¡ Xi;j¡1. Then for a given i and j ,

Pr[Oi;j j Oi;j¡1; Ni;j¡1; pold ; p n ew]

=

Xmax
i;j ¡ 1X

x = Xmin
i;j ¡ 1

n
Pr[Xi;j¡1 = x j Oi;j¡1; Ni;j¡1; pold ; p n ew]

£ Pr[Oi;j j Xi;j¡1 = x; Oi;j¡1; Ni;j¡1; pold ; p n ew]
o
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=

Xmax
i;j ¡ 1X

x = Xmin
i;j ¡ 1

bin(x; Oi;j¡1; pold )bin(Oi;j ¡ x; Ni;j¡1; p n ew): (2:4)

The probability of all the data is the product over quadrats and years of terms like Equation
(2.4),

Pr[fOi;j : j ¶ 2g j fOi;1g; fNi;jg; pold ; p n ew]

=

QY

i = 1

TY

j = 2

Pr[Oi;j j Oi;j¡1; Ni;j¡1; pold ; pn ew]

=

QY

i = 1

TY

j = 2

Xmax
i;j ¡ 1X

x = Xmin
i;j ¡ 1

bin(x; Oi;j¡1; pold )bin(Oi;j ¡ x; Ni;j¡1; pn ew): (2:5)

We veri� ed that this model produces satisfactory posterior distributions on simulated
data and then turned our attention to the question of � ags.

3. INFORMATION

To � ag or not to � ag, that is the question!
The likelihood function in Equation (2.5), along with a prior distribution for pold and

p n ew, yields a joint posterior for pold and p n ew. To understand whether � agging is worth
the effort, we compare that posterior with the one we would obtain using the likelihood
function in Equation (2.3).

One way to portray the value of � agging is to simulate many data sets, analyze each one
with and without � ags, and calculate regions of high posterior density for the parameters of
interest. For this purpose, we simulated data from 100 experiments with T = 5, pold = 0:8,

p n ew = 0:3, Oi;1 = 1, Ni;j having a Poisson distribution with rate ¶ = 1, and either

Q = 10 or Q = 30. The values of pold , p n ew, and ¶ are ones we considered plausible for
real forests a priori and were used only to generate data, not to analyze it. Later in this
section, we consider a more malicious choice of parameters; Section 4 shows the values of
parameters that turned out to be plausible a posteriori for our data set. We used independent
beta(1:5; 1:5) priors for pold and p n ew and calculated lengths of approximate 90% highest
posterior density (HPD) regions, i.e., the smallest possible intervals containing 90% of the
posterior mass for pold and pn ew. Results, jittered for legibility, are in Figure 1. Each point

represents one simulated data set. The horizontal axis shows the length of the 90% HPD
interval that would have been obtained had the experiment been run with � ags. The vertical
axis shows the length of the 90% HPD interval that would have been obtained had the
experiment been run without � ags. As expected, HPD regions from non� agged analyses
are longer than HPD regions from � agged analyses. The plots also show that non� agging
typically results in a length increase of less than 50%. The usual asymptotics imply that
lengths will decrease in proportion to Q¡0:5. Thus, assuming conditions similar to those of
the simulation, an experiment without � ags will need roughly twice as many quadrats to
obtain HPD intervals of similar length.
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Figure 1. Lengths of HPD Regions From Simulated Experiments. Circles are from experiments
with Q = 10; triangles are Q = 30. The solid line has slope 1; the dotted line has slope 1.5. Data

are jittered for legibility.

The simulation can be supported by calculations of the Fisher information in � agged
and un� agged experiments. As an example, consider a single quadrat and suppose that

O1;1 = N1;1 = 1. In year 2 of a � agged experiment, we observe X1;1 and Y1;1. The Fisher
information matrix for (pold ; p n ew) is

2

64

¡ 1

pold (1 ¡ pold )
0

0
¡ 1

p n ew(1 ¡ pn ew)

3

75 :

In contrast, in year 2 of an un� agged experiment, we observe O1;2. The Fisher information
matrix is

¡ 1

pold + p n ew ¡ 2pold p n ew

2

664

pold + p2
n ew ¡ 2pold p n ew

pold (1 ¡ pold )
1

1
p2

old + p n ew ¡ 2pold p n ew

p n ew(1 ¡ p n ew)

3

775

with inverse

1

(pold ¡ p n ew)2
£

·
a b
c d

¸
;

where

a = ¡ pold (1 ¡ pold )(p2
old ¡ 2pold p n ew + p n ew)

b = pold (1 ¡ pold )p n ew(1 ¡ p n ew)

c = pold (1 ¡ pold )p n ew(1 ¡ p n ew)

d = ¡ p n ew(1 ¡ p n ew)(p2
n ew ¡ 2pold p n ew + pold ):

Large-sample standard deviations for pold and pn ew, whether classical or Bayesian, will
be roughly proportional to the square roots of the diagonal elements of the inverses of the
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Figure 2. S D ® ag(pold )=S D n o® ag(pold ) as in Equation (3.1) (a) as a Function of pold and pn ew,
(b) as a Function of pold for (1) pn ew = 0:01, (2) pn ew = 0:05, (3) pn ew = 0:10, (4) pn ew = 0:20,

and (5) pn ew = 0:30.

Fisher information matrices. To help decide whether to � ag, we examine the ratio of the
standard deviations from � agged and un� agged experiments, i.e.,

SD ® ag(pold )

SDn o® ag(pold )
º

s
p2

old ¡ 2pold p n ew + p2
n ew

p2
old ¡ 2pold p n ew + p n ew

: (3:1)

Figure 2 displays this function, which, by symmetry, applies to p n ew as well. Panel (a) is
a contour plot; panel (b) displays the ratio as a function of pold for � ve different values
of p n ew ranging from 0.01 to 0.30, values we consider plausible in real forests. In each
panel, the black spot is the point at which the HPD simulations were done. This ratio
is bounded between zero and one. Low values say that a � agged experiment is much

more informative than an un� agged experiment; high values say the opposite. The ratio
goes to zero along the diagonal, suggesting that, when p n ew = pold , a � agged experiment
is in� nitely more informative than an un� agged experiment. Sundberg (1974) contains
relevant theory. (Xi;j ; Yi;j) follows an exponential family of distributions. Observing only
their sum Oi;j + 1 is a special case of Sundberg’s Example 3 (1974, p. 50). Paraphrasing
from Sundberg (p. 54),

Let ¬ = (pold ; p n ew) be the true parameter. All we need impose in order to
obtain n1=2 consistency is that the Fisher information matrix be strictly positive
de� nite, ensuring that the observable statistic provides information on all of the
parameter ¬ . This condition is not necessary for consistency, but when the
condition is not satis� ed, we cannot expect a maximum likelihood estimate to
be n1=2 consistent, i.e., n1=2(^¬ ¡ ¬ ) to be bounded in probability as n ! 1.
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Our large sample SD ratio goes to zero along the diagonal because the Fisher informa-
tion matrix in the un� agged case is not positive de� nite when pold = p n ew . To see for which
function of (pold ; p n ew) we have direct information, it is useful to rewrite the likelihood,
dropping subscripts on X1;1 and Y1;1, as

p(x; y j pold ; p n ew)

= px
old (1 ¡ pold )1¡xpy

n ew(1 ¡ p n ew)1¡y

= exp

½
x ln

pold

1 ¡ pold
+ y ln

p n ew

1 ¡ p n ew
+ ln(1 ¡ pold )(1 ¡ p n ew)

¾

= exp

½
(x + y)

1

2
ln

pold p n ew

(1 ¡ pold )(1 ¡ p n ew)

+(x ¡ y)
1

2
ln

pold (1 ¡ p n ew)

(1 ¡ pold )p n ew
+ ln(1 ¡ pold )(1 ¡ p n ew)

¾
;

from which we see that ln[(pold p n ew)=(1 ¡ pold )(1 ¡ p n ew)] is the parameter with direct
information when we observe x + y. Brown (1986, pp. 8–13) contains more details about
marginal distributions from exponential families.

In real forests, p n ew is generally quite small and less than pold , so the SD ratio under
realistic conditions is bounded away from zero. Nonetheless, there are realistic values of

(pold ; p n ew) for which the ratio is quite small. Apparently, under these conditions, one could
lose quite a bit of information, relatively speaking, by not � agging. To see just how much,
without relying on asymptotics, we conducted a simulation similar to that in Figure 1 but
this time with pold = p n ew = 0:3. Figure 3 shows the results. Not much has changed for

pold . But for p n ew , the situation is quite different. HPD regions from un� agged experiments
can be up to four times as long as those from � agged experiments. If estimation of p n ew were
the goal and length of HPD region were the utility, then un� agged experiments would need
up to about 16 times as many quadrats to achieve the same utility as � agged experiments.
This penalty is generally a small price to pay for the convenience of not � agging.

4. ANALYSIS

This sectionpresents our analysis of data collected annually on red maple (Acer rubrum)
seedlings from 1-m2 quadrats arranged along transects in the southern Appalachians (Clark

et al. 1998). To carry out the analysis, we have to account for errors in the data (Section 4.1).
We also examine some aspects of sensitivity to the prior (Section 4.2) and to the assumption
that parameters are constant through space and time (Section 4.3).

4.1 ER RORS IN DATA

Table 1 shows the recorded counts of maple seedlings over a 5-year period in quadrat 2
at the Coweeta Experimental Station in western North Carolina.

The point of interest is that O2;3 > O2;2 + N2;2. According to our model, that’s not
possible and can only be the result of a data error. In the case of red maple, such errors are
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Figure 3. Lengths of HPD Regions From Simulated Experiments. Octogons are from experiments

with Q = 10; triangles are Q = 30. The solid line has slope 1; the dotted line has slope 1.5; the
dashed line has slope 4. Data are jittered for legibility. Histograms of HPD length from un° agged

analysis divided by HPD length from ° agged analysis.

most likely due to new seedlings emerging late in the year, after the July census. We therefore
re� ne the model to account for such errors. In effect, the true number of new seedlings should
be the number that have emerged before winter, which might be more than the number that
have emerged and been found when the data are recorded. These considerations lead to a
model in which we assume that the number of old seedlings has been correctly recorded
but the number of new seedlings might be in error.

Let N T
i;j be the true number of new seedlings in quadrat i in year j . We model

Ni;j ¹ bin(NT
i;j ; f n ew), where f n ew is the probability that a given new seedling is present
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Table 1. Numbers of Old and New Maple (Acer) Seedlings Recorded in Quadrat 2 at Coweeta.

Year

1 2 3 4 5

O2;j 1 0 1 0 0
N2;j 0 0 0 0 0

and recorded at the time of the census, i.e., Ni;j comes from a binomial distribution with
both parameters unknown. Inference in such a problem is notoriously dif� cult because of an
ill-behaved likelihood function. (See, e.g., the discussion in Kahn (1987), Raftery (1988),
or Lavine and Wasserman (1992).) We also change Equation (2.2) to

Yi;j ¹ bin
¡
N T

i;j ; p n ew

¢

and set

X m in
i;j¡1 = max

¡
0; Oi;j ¡ NT

i;j¡1

¢
:

The full model is now

Pr
£
fOi;j : j ¶ 2g; fNi;jg j fOi;1g;

©
NT

i;j

ª
; pold ; p n ew; fn ew

¤

=

QY

i = 1

TY

j = 2

Xmax
i;j ¡ 1X

x = Xmin
i;j ¡ 1

bin(x; Oi;j¡1; pold )bin
¡
Oi;j ¡ x; N T

i;j¡1; p n ew

¢

£
QY

i= 1

TY

j = 1

bin
¡
Ni;j ; N T

i;j ; fn ew

¢
:

Let beta(¢ ; ¢), Poi(¢), and gam(¢ ; ¢) be the beta, Poisson, and gamma distributions,
respectively. For the purpose of Bayesian analysis, we adopt the following priors:

pold ¹ beta( ¬ pold ; ­ pold )

p n ew ¹ beta( ¬ pnew ; ­ pnew )

fn ew ¹ beta( ¬ fnew
; ­ fnew

)
©

N T
i;j

ª
j ¶ ¹ i:i:d: Poi( ¶ )

¶ ¹ gam( ¬ ¶ ; ­ ¶ ):

We take ¬ pold = ­ pold = ¬ pnew = ­ pnew = 1 for � at priors on pold and pn ew and ¬ ¶ = 0:4,

­ ¶ = 10 for a fairly � at prior on ¶ with a mean = 4. Including fXi;j g as auxiliary variables
makes the posterior amenable to Gibbs sampling (Gelfand and Smith 1990; Casella and
George 1992), with the following complete conditionals:

(1) pold: Each quadrat in each year yields a binomial experiment with Oi;j number
of trials, Xi;j number of successes, and pold probability. Therefore, the complete
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conditional distribution for pold is

beta

Ã

¬ pold +

QX

1

T ¡1X

1

Xi;j ; ­ pold +

QX

1

T ¡1X

1

(Oi;j ¡ Xi;j )

!

:

(2) pnew: Each quadrat in each year yields a binomial experiment with NT
i;j number

of trials, Oi;j + 1 ¡ Xi;j number of successes, and p n ew probability. Therefore, the
complete conditional distribution for p n ew is

beta

Ã

¬ pnew +

QX

1

T ¡1X

1

(Oi;j + 1 ¡ Xi;j ); ­ pnew +

QX

1

T ¡1X

1

(N T
i;j ¡ Oi;j + 1 + Xi;j)

!

:

(3) fnew: Each quadrat in each year yields a binomial experiment with NT
i;j number

of trials, Ni;j number of successes, and fn ew probability. Therefore, the complete
conditional distribution for f n ew is

beta

Ã

¬ fnew +

QX

1

TX

1

Ni;j ; ­ fnew +

QX

1

TX

1

(N T
i;j ¡ Ni;j)

!

:

(4) ¶ : Each quadrat in each year yields a Poisson experiment with parameter ¶ and N T
i;j

number of occurrences. Therefore, the complete conditional distribution for ¶ is

gam

Ã

¬ ¶ +

QX

1

TX

1

N T
i;j ; ­ ¶ + QT

!

:

(5) Xi;j : Each quadrat in each year yields two binomial experiments with parameters

(Oi;j ; pold ) and (N T
i;j ; p n ew). We observe their sum Oi;j + 1, which gives bounds

X m in
i;j and X m ax

i;j on Xi;j . (See last paragraph of page 23 and the second display

equation on page 29.) Therefore, the complete conditional distribution for Xi;j is
discrete on the integers from X m in

i;j to X m ax
i;j with probabilities proportional to

bin
¡
Xi;j ; Oi;j ; pold ) £ bin(Oi;j + 1 ¡ Xi;j ; N T

i;j ; p n ew

¢
:

(6) NT
i;j : Each N T

i;j is a realization of a Poisson random variable with parameter ¶ and is
also the number-of-trials parameter in two binomial experiments, one in which Ni;j

seedlings are observed and one in which Oi;j + 1 ¡ Xi;j seedlings survive. Therefore,
the complete conditional distribution for N T

i;j is discrete on the integers greater than
or equal to min(Oi;j + 1 ¡ Xi;j ; Ni;j ) with probabilities proportional to

Poi(N T
i;j ; ¶ ) £ bin(Oi;j + 1 ¡ Xi;j ; N T

i;j ; p n ew) £ bin(Ni;j ; N T
i;j ; fn ew):

One could sample N T
i;j with a random walk Metropolis step, but we � nd it simpler

to � x an upper bound on NT
i;j , calculate all the probabilities between the lower and

upper bounds, and use a Gibbs step. This works well in practice because the Poisson
part of the distribution prevents N T

i;j from taking very large values. Therefore, the
upper bound makes little practical difference.
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After verifying that this model yields satisfactory posteriors on simulated data, we turned
our attention to real data. Table 2 shows data from 60 quadrats at Coweeta. Figure 4
shows posterior density estimates based on output from 2,000 iterations of a Gibbs sampler,
collected at intervals of 50 after discarding the initial 500. Figure 4 is important not only

for what it says about marginal posterior densities but also as a basis for comparison later
in this article. Sections 4.2 and 4.3 explore sensitivities, and � gures in those sections will
be compared with Figure 4 when the prior and the model are elaborated.

4.2 SENSITIVITY TO THE PR IOR

Figure 5 is a pairs plot of draws from the joint posterior distribution of pold , p n ew,

fn ew , and ¶ . The last three parameters are highly dependent on each other but relatively
independent of pold . The dependence is easiest to understand in the case of (f n ew; ¶ ). Our
model says that new seedlings arise as a Poisson process with rate ¶ ; we observe each one
with probability fn ew; therefore, our observations fNi;jg are Poisson with rate ¶ 0 = ¶ fn ew

and, therefore, the data can pin down ¶ 0 fairly well but not each parameter separately. In fact,
the joint posterior density of fn ew and ¶ has a ridge along the hyperbola ¶ fn ew = 0:843,
the posterior mean of ¶ 0.

The joint posterior of pn ew and ¶ also follows a hyperbola, ¶ p n ew = 0:352, the posterior

mean of ¶ 00 = ¶ p n ew , for similar reasons. Our model says the number of new seedlings
that survive from one year to the next in a given quadrat is Poisson with rate ¶ 00 , so ¶ 00 is
roughly determined by the number of new seedling survivals needed for the model to be a
good � t for the data. And p n ew and fn ew are positively correlated with each other because
they are each negatively correlated with ¶ .

The foregoing discussion suggests that the joint likelihood of p n ew , fn ew, and ¶ is sharpest
in the two directions corresponding to ¶ 0 and ¶ 00 but is relatively � at in other directions;
inspection of Figure 5 shows that the conditional posterior distribution of any one of these

three variables depends strongly on the values of the others. These considerations suggest
that prior elicitation is likely to be an important issue, one that could have a large in� uence
on the posterior.

It is worth exploring, then, the sensitivity of the posterior density of pold and p n ew,
the parameters of primary interest, to the prior for fn ew . As an extreme exploration, we
calculated the posterior conditional on f n ew = 0:9. Figure 6 shows the marginal posteriors.
As feared, this changes the posterior of p n ew . It also changes the posterior of ¶ , but that is
of secondary interest, and makes minor changes to the posterior of pold .

There are several possible solutions to this problem. One is to incorporate other

information about at least one dimension of (p n ew; fn ew; ¶ ). For example, frequent revisiting
of a small number of quadrats during the course of a growing season could provide good
information and hence strong priors for fn ew and ¶ . Such priors would cut across the � at
direction of the likelihood function and yield sharper inferences.

Another possible solution is to conduct future censuses later in the growing season. A
census timed after most seedlings have emerged is almost equivalent to an a priori belief
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Table 2. Data From Coweeta: 60 Plots, 5 Years

Old seedlings New seedlings
Quadrat

1993 1994 1995 1996 1997 1993 1994 1995 1996 1997

1 1 1 1 1 1 0 0 1 0 0
2 1 0 1 0 0 0 0 0 0 0
3 0 0 1 1 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 2 1 1 1 1 0 0 0 0 0
6 0 0 0 0 0 1 0 0 0 0
7 3 2 1 2 0 1 0 0 0 1
8 1 1 1 1 1 0 0 0 0 2
9 1 1 1 1 0 1 0 2 0 0

10 0 0 0 0 0 0 0 0 1 0
11 0 0 2 1 2 0 0 0 0 1
12 0 0 0 0 0 0 0 0 0 0
13 1 0 1 1 1 0 0 0 0 1
14 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0
16 1 0 1 1 1 0 0 2 1 2
17 1 0 0 0 0 0 0 0 0 1
18 0 0 0 0 0 0 0 0 0 1
19 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 1 0 0
24 0 0 0 0 0 0 0 0 0 1
25 1 1 2 1 1 0 0 2 1 2
26 3 2 1 3 1 3 0 1 1 1
27 1 0 1 0 0 0 0 0 0 2
28 3 0 1 0 0 1 0 1 0 4
29 1 1 1 1 0 0 0 0 0 5
30 1 0 0 1 0 3 0 0 1 2
31 0 0 0 0 0 3 0 1 2 2
32 0 0 0 0 1 0 0 2 0 5
33 1 0 0 0 2 1 0 1 1 0
34 2 1 1 0 0 4 0 0 0 2
35 0 0 0 0 0 2 0 2 1 3
36 1 0 1 0 0 2 0 0 0 6
37 0 0 0 2 1 1 0 3 0 4
38 0 0 0 0 0 0 0 0 1 1
39 1 0 0 1 0 1 0 2 2 4
40 0 0 0 1 0 0 0 16 1 9
41 1 0 0 7 0 3 0 10 0 7
42 2 0 0 4 0 1 0 6 0 1
43 0 0 0 2 1 0 0 4 0 3
44 0 2 0 5 3 0 0 7 0 1
45 1 0 0 0 0 0 0 5 0 4
46 0 1 0 0 0 1 0 0 0 0
47 2 1 0 0 1 1 0 3 2 0
48 0 0 1 0 1 1 0 0 0 0
49 2 1 0 1 0 0 2 2 0 3
50 2 0 0 0 0 1 0 1 0 0
51 2 0 0 1 1 3 0 1 1 1
52 0 0 0 1 1 1 1 1 0 0



STATISTICAL MODELING OF SEEDLING MORTALITY 33

Table 2. (Cont’d.)

Old seedlings New seedlings

Quadrat 1993 1994 1995 1996 1997 1993 1994 1995 1996 1997

53 0 0 0 0 0 2 0 2 0 0
54 3 0 0 2 0 3 0 10 0 0
55 2 0 0 1 1 0 0 8 2 1
56 1 2 0 2 0 1 1 10 0 3
57 0 0 0 1 0 1 0 4 0 1
58 0 0 0 0 0 1 0 1 0 0
59 0 0 0 0 0 0 0 0 0 0
60 1 0 1 0 0 0 0 0 0 0

that fn ew is close to one. (The possibility that seedlings have emerged but are simply
overlooked is small.) But a large value of fn ew suggests that N T

i;j is likely to be very
close to its logical minimum max(Ni;j ; Oi;j + 1 ¡ Oi;j ) and therefore that an accurate
approximation to the posterior can be had by conditioning on each N T

i;j being equal to its

logical minimum. If valid, this leads back to the likelihood in Equation (2.5) but where Ni;j

is replaced by max(Ni;j ; Oi;j + 1 ¡ Oi;j). The posterior can be computed exactly, with no
need for Markov chain Monte Carlo. For our dataset, the exact conditional posterior is an
excellent approximation to the unconditional posterior, is very much easier to compute, and
is well worth considering for this species when the census can be conveniently timed and
when the ecologists are willing to assert a strong prior. If these conditions don’t hold, then
setting N T

i;j as small as possible is not appropriate.

4.3 CHANGES THROUGH TIME AND SPACE

4.3.1 Arrivals

Several considerations suggest that new seedling arrival rates may vary either spatially
or temporally:

° visual inspection of Table 2,
° a plot, not shown here, of §5

j = 1 Ni;j =5, the annual average value of Ni;j as a function
of i,

° the physical layout of the 60 quadrats in a single 1-m£60-m transect along an elevation
contour on a hillside,

° spatial and temporal variation in weather, seed rain, rhododendron cover, and other
unmeasured covariates.

While all these considerations suggest that ¶ may vary spatially and temporally, it is not
at all clear what form the effects should take or even whether the variation will be smooth
or rough. We explored three models in which each (quadrat, year) combination has its own
new seedling arrival rate ¶ i;j , modeled as the sum of a year effect and a quadrat effect.
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Figure 4. Posterior Densities From Table 2 Data. (a) pold ; (b) pn ew; (c) fn ew ; (d) ¶ .

The three models incorporate unconstrained (except for sum-to-zero) year effects and have
quadrat effects that are either

(1) unconstrained,
(2) increasing linearly from left to right, or
(3) piecewise constant with a low value on quadrats 1–24 and a high value on quadrats

25–60.

Let ¶ i;j be the Poisson arrival rate of new seedlings in plot i and year j. We suppose
that N T

i;j is distributed Poisson( ¶ i;j ) and adopt a generalized linear model with log ¶ i;j =

log ¶ + ¬ i + ­ j . With this re� nement, Ni;j is distributed Poisson( ¶ 0
i;j) with log ¶ 0

i;j =
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Figure 5. Pairs Plot of Draws From Posterior Densities Using Data From Table 2. Each plot

represents one pair of variables. Each point on the plot represents one draw from the posterior.

log ¶ 0 + ¬ i + ­ j . Considering the Ni;j ’s only, ¶ and f n ew are not identi� able but the

¬ i’s and ­ j ’s are. Standard generalized linear model (GLM) software yields maximum
likelihood estimates (MLEs) for the ¬ i’s and ­ j ’s. Plots of � tted effects and predicted

versus actual numbers of seedlings and analyses of deviance (not shown here) support the
use of unconstrained quadrat effects.

We could now incorporate unconstrained quadrat and year effects for ¶ into our full
model. A common choice would be, e.g., a hierarchical structure such as log ¶ ¹ N(m; s2),

¬ i ¹ N(0; ¼ 2
¬ ), ­ j ¹ N(0; ¼ 2

­ ), suitable priors for ¼ 2
¬ and ¼ 2

­ , and possibly identi� ability
or sum-to-zero constraints on the ¬ i’s and ­ j’s. However, almost any sensible, fairly � at
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Figure 6. Posterior Densities From Table 2 Data Setting fn ew = 0:9. (a) pold ; (b) pn ew; (d) ¶ .

prior on the ¬ i’s and ­ j’s should result in shrinkage that will lead to a posterior compromise
between setting all the ¬ i’s and ­ j ’s equal to zero and setting them all equal to their MLEs. As
an exploratory measure, we set them equal to their MLEs, � nd the posterior for (pold ; p n ew),
and compare it with the posterior in Figures 4 and 5.

Figure 7 shows marginal posterior distributions when the ¬ i’s and ­ j ’s are set equal to
their MLEs. They are very similar to the marginal posteriors in Figures 4 and 5. We believe
that almost any sensible prior on the ¬ i’s and ­ j’s that would be chosen in practice would
yield a similar posterior. In this case, better modeling of the emergence process does not
strongly affect our posterior for the parameters of interest.
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Figure 7. Posteriors From Model With ANOVA E® ects for ¶ . (a) pold ; (b) pn ew; (c) fn ew;
(d) ¶ .

4.3.2 Survival

Handling quadrat and year effects in survival rates is more dif� cult because we don’t
know the Xi;j’s and there is no off-the-shelf software for estimating MLEs. If we did know
the Xi;j’s, then we could average over quadrats (or years) to get crude estimates of survival
rates by years (or quadrats) and a rough sense of whether re� ning the model is likely to
be important. To pursue this idea, we temporarily set each Xi;j equal to X m ax

i;j simply to
make this averaging possible. So, e.g., we attribute the old seedling in quadrat 1, 1996,

to the old seedling in quadrat 1, 1995, not the new seedling. As before, we attribute the
old seedling in quadrat 2, 1995, to an unobserved new seedling in quadrat 2, 1994. This is
roughly equivalent to conditioning on pold ¾ p n ew, which we believe to be reasonable for
many species in many forests, though not necessarily for Acer rubrum in this particular plot
at Coweeta.

Let pold ;j be the survival rate of old seedlings in year j . The four estimates are pold ;1 º
14=46 = :30, pold ;2 º 9=18 = :5, pold ;3 º 12=21 = :57, and pold ;4 º 16=47 = :34.
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Figure 8. (a) Likelihood Plot of pold for Di® erent Years; (b) Likelihood Plot of pold for Di® erent

Quadrats.

Ignoring quadrat effects for the moment, we can treat the 14 survivals out of 46 seedlings
in year 1 like data from a binomial experiment and calculate a “likelihood” function. That
likelihood function is plotted in Figure 8(a), along with the likelihood functions for the other
3 years. The overall impression is that 1993 and 1996 had lower survival rates than 1994
and 1995, although the data from all years is consistent, with a single survival rate near .4.
Figure 8(b) shows likelihood functions for quadrat effects. A � rst impression is of greater
differences between quadrats than between years, with most quadrats being consistent with

pold º :4, but see points 3 and 4 below.
Some points to note are as follows:

(1) Most of the likelihood curves in Figure 8 are consistent with a single value of

pold º 0:35.
(2) Only 40 of the 60 quadrats had at least one old seedling. The other 20 had no old

seedlings in the � rst 4 years and consequently no likelihood function.
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(3) The quadrat likelihood functions most different from the others are those that rise
toward the lefthand side of Figure 8(b). The three most extreme are for quadrats
41, 42, and 54, which had 8, 6, and 5 old seedlings, respectively, and no survivors.
The old seedlings in these three quadrats all emerged in 1993 and 1996, years with

low survival rates. Therefore, an analysis accounting for year and quadrat effects
simultaneously would attenuate the apparent quadrat effects.

(4) The curve that rises most toward the righthand side of Figure 8(b) is from quadrats 1
and 8, which both have new seedlings in every year. The plots are based on the
assumption Xi;j = X m ax

i;j . Properly accounting for uncertainty in Xi;j would tend
to � atten the curves in Figure 8, making them all more consistent with each other
and with values of pold º :4.

We conclude that there is no clear indication whether to include year and quadrat effects

on seedling survival; the data seem compatible with the hypothesis of no effects. To see
whether their inclusion makes a difference in our ultimate inference about pold , we chose to
work with year effects. We � t a model with four different values of pold , one for each year,
making appropriate changes to the model. Posterior densities are in Figure 9 and show that
inferences about pold and p n ew do not depend strongly on whether we model year effects
for pold .

5. DISCUSSION

We have presented a data collection and modeling approach that allows us to estimate
seedling survival probabilities with a fraction of the � eld labor required by the common
practice of � agging all seedlings. Unfortunately, when seedlings are not � agged, the
statistical labor increases. Fortunately, for the analysis presented here, the labor does not
increase dramatically. Field labor for � agging is the biggest factor limiting the size and

scope of data collection and analysis (Clark et al. 1999). By substantially reducing the labor
cost, our approach allows for more studies to be undertaken in the future and for those to
be more comprehensive.

Inference about p n ew, the mortality of � rst year seedlings, appears to be sensitive to the
prior. For classical statisticians, we think inference about p n ew will be sensitive to how
well f n ew and ¶ can be estimated. One solution is to schedule censuses late enough in the
growing season so fn ew is close to one. Another is to incorporate external information about

fn ew and ¶ . If external information is not available and if the full census must be done early
in the growing season, then revisiting a fraction of the quadrats late in the season would

yield information about f n ew and improve the inference about p n ew.
Our analysis led to one unanticipated � nding: our posterior did not strongly show

pold > p n ew. There are several possible explanations including data errors, insuf� cient
understanding of biology, and unreasonable prior expectations. We would like to be able
to shed more light but our current state of understanding forces us to resort to cliche: more
work needs to be done.
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Figure 9. (a) Posterior Densities of pold ’s for Four Di® erent Years and Their Mean; (b)
Posterior Density of pn ew; (c) Posterior Density of fn ew; (d) Posterior Density of ¶ .

We re� ned the model to account for spatial and temporal effects on arrival and survival
probabilities. A common approach is to use a generalized linear model having ANOVA-
like quadrat and year effects in the linear predictor. However, we believe it is good
practice to explore re� nements before adopting them. For our data, we found that more
elaborate modeling of arrivals and survivals has little effect on the marginal posteriors of

the parameters of interest. We would not have discovered this and would have had less
con� dence in our results had we simply adopted the re� nements without exploring their
in� uence.

By considering only two age classes, our approach does not provide a full age-
speci� c survivorship schedule. A long-term census study could, by � agging each seedling,
eventually accumulate age-speci� c information that would enhance our understanding of
seedling mortality. However, based on past experience and the labor limitations inherent
in � agging, we do not expect many such data sets in the near future. Our method provides
a quick alternative that is more likely to yield data sets of greater spatial and temporal
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coverage that will increase our understanding of seedling survival and ultimately our
understanding of the survival and spread of past, present, and future populations of trees.

Our method is being used as the basis for studies investigating factors that affect seedling
mortality. These studies typically use our model as a base but model pold , p n ew , and ¶ with

generalized linear models having other factors as covariates. For example, Beckage (2000)
studies the effects of canopy gaps and understory shrubs on seedling survival, and work
in progress investigates variability in survival across species as well as across elevation
gradients.
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