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Abstract. Accurate estimation of forest net primary productivity (NPP), biomass, and their sensitivity to

changes in temperature and precipitation is important for understanding the fluxes and pools of terrestrial

carbon resulting from anthropogenically driven climate change. The objectives of this study were to (1)

estimate potential forest NPP and biomass for New England using a regional ecosystem model, (2)

compare modeled forest NPP and biomass with other reported data for New England, and (3) examine the

sensitivity of modeled forest NPP to historical climatic variation. We addressed these objectives using the

regional ecosystem model LPJ-GUESS implemented with eight plant functional types representing New

England forests. We ran the model using 30-arc second spatial resolution climate data in monthly time-

steps for the period 1901–2006. The modeled forest NPP and biomass were compared to empirically-based

MODIS and FIA estimates of NPP and U.S. forest biomass. Our results indicate that forest NPP in New

England averages 428 g C�m�2�yr�1 and ranges from 333 to 541 g C�m�2�yr�1 for the baseline period (1971–

2000), while forest biomass averages 135 Mg/ha and ranges from 77 to 242 Mg/ha. Modeled forest biomass

decreased at a rate of 0.11 Mg/ha (R2¼ 0.74) per year in the period 1901–1949 but increased at a rate of 0.25

Mg/ha (R2¼ 0.95) per year in the period 1950–2006. Estimates of NPP and biomass depend on forest type:

spruce-fir had the lowest mean of 395 g C�m�2�yr�1 and oak forest had the highest mean of 468 g

C�m�2�yr�1. Similarly, forest biomass was highest in oak (153 Mg/ha) and lowest in red-jack pine (118 Mg/

ha) forests. The modeled NPP for New England agrees well with FIA-based estimates from similar forests

in the mid-Atlantic region but was smaller than MODIS NPP estimates for New England. Nevertheless, the

modeled inter-annual variability of NPP was strongly correlated with the MODIS NPP data. The modeled

biomass agrees well with U.S. forest biomass data for New England but was less than FIA-based estimates

in the mid-Atlantic region. For the region as a whole, the modeled NPP and biomass are within the ranges

of MODIS- and FIA-based estimates. Forest NPP was sensitive to changes in temperature and precipitation:

NPP was positively related to temperatures in April, May and October but negatively related to summer

temperature. Increases in precipitation in the growing season enhanced forest NPP.
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INTRODUCTION

Forest net primary productivity (NPP) is a key

component of the global carbon cycle and an

important link between the biosphere and the

atmosphere, influencing water fluxes, nutrient

cycles, and climate variation (e.g., Prentice et al.

2000). Modeling both spatial and temporal
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variations in forest NPP is important for improv-
ing estimates of the terrestrial carbon cycle (Cao
et al. 2004) and for explaining variation in
atmospheric carbon content (Potter et al. 1998).
Modeling forest biomass is important not only
for policy-makers to deal with greenhouse gas
mitigation (Morales et al. 2007, Smith et al. 2008,
Zhao and Running 2010) but also for forest
managers to determine forest change and wild-
fire regimes (Mickler et al. 2002). Accurate
estimates of forest NPP and biomass therefore
have implications for (1) analyzing long-term,
large-scale changes in carbon stocks over space
and time (Houghton 2005); (2) examining the
dynamics of forest distribution and composition
like the conversion of forested land to cultivated
fields; and (3) providing data that are useful for
model-based inter-comparison studies on forest
carbon and biomass change (Brown et al. 1999,
Jenkins et al. 2001).

Direct measurement of forest NPP and bio-
mass on the ground is costly, time consuming
and limited to short-term intervals (e.g., Hought-
on 2005). Forest inventories, satellite-based veg-
etation indices and vegetation models are
typically used to estimate forest NPP and
biomass. Forest inventories provide plot-level
information about plant growth, diameter and
litter fall, and the resultant estimates of NPP and
biomass are often thought to be of high accuracy
(Houghton 2005). However, they do not map the
spatial patterns of forest NPP and biomass at
broad scales without being scaled-up, which can
introduce errors in the resultant estimates
(Houghton 2005, Smith et al. 2008). In addition,
forest inventory-based approaches rarely reveal
the mechanisms that account for changes in
forest NPP and biomass (Kauppi et al. 1992).
Satellite-based vegetation indices can be incor-
porated into light-use efficiency models such as
LULUE (Brogaard et al. 2005) to estimate forest
NPP and biomass at large spatial scales (Markon
and Peterson 2002, Dawson et al. 2003). Howev-
er, these models often ignore site, biome or
forest-type specific information about forest
structure and composition and therefore risk
producing biased NPP and biomass estimates at
the regional scales (Jenkins et al. 2001). The use of
satellite data to constrain relevant parameters in
process-based vegetation models provides prom-
ise for improved estimation, but such techniques

are still under development (Smith et al. 2008).
Process-based vegetation models, including

terrestrial biogeochemistry models (TBMs) like
Biome-BGC (Running and Coughlan 1988) and
dynamic global vegetation models (DGVMs) like
LPJ-DGVM (Sitch et al. 2003), have been widely
used in estimating forest NPP and biomass at
broad spatial scales. These models include
mechanistic representations of the ecosystem
carbon cycle and its dynamic responses to
external disturbances, including plant photosyn-
thesis and the allocation of assimilated carbon to
leaves, roots, sapwood and heartwood, and are
therefore useful for quantifying forest NPP and
biomass (Cramer et al. 2001, Morales et al. 2007).
There remains a great need, however, to evaluate
vegetation model-based NPP and biomass esti-
mates (e.g., Gower et al. 2001). The utility of these
models can be improved by (1) creating finer
definition of forest types at regional scale
(Jenkins et al. 2001), and (2) increasing the
quality of model input data (e.g., the resolution
of climate data).

A shortcoming in many current TBMs and
DGVMs is that they are optimized to reproduce
overall patterns and temporal variability in
biomass production and stocks at global and
continental scales, but tend to be too generalized
to consistently provide reliable estimates at
regional (e.g., New England) scales (Smith et al.
2001, Moorcroft 2003). Specifically, most large-
scale models lack an explicit representation of
tree population size structure, demography and
life history differences, which are closely tied to
the temporal and spatial variability of structure
and function in forest landscapes (Purves and
Pacala 2008). Dynamic vegetation models that
are optimized for regional applications address
these shortcomings through differentiation of
tree life history groups, age or size classes, and
their interactions in competition for light and soil
resources (Smith et al. 2001).

Previous studies on forest NPP and biomass
estimates in New England are mostly at plot and
county-level scales (e.g., Brown et al. 1999) and
few focus on regional scale mapping of forest
NPP and biomass for New England (e.g., Zheng
et al. 2008). The goals of this study were to (1)
estimate forest NPP and biomass for New
England using a regional dynamic vegetation-
ecosystem model LPJ-GUESS (Smith et al. 2001),
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(2) compare modeled NPP and biomass with
other reported data for New England or for
similar forests, and (3) examine the sensitivity of
forest NPP to historical climatic variation. To-
ward these ends, we first parameterized LPJ-
GUESS using eight plant functional types (PFTs)
encompassing the major tree species of New
England forests. We then ran the model driven
by 30-arc second spatial resolution climate data
in monthly-step for the period 1901–2006. The
modeled NPP and biomass were compared with
MODIS NPP data by Zhao et al. (2005), U.S.
forest biomass data by Blackard et al. (2008) and
forest inventory and analysis (FIA) based NPP
and biomass estimates for the mid-Atlantic
region of U.S. by Pan et al. (2006) and Jenkins
et al. (2001). Sensitivity experiments were per-
formed with the model to analyze the influence
of historical climatic variation on forest NPP.

MATERIAL AND METHODS

The study region
New England is located in the northeastern

United States and ranges from 73.728W to
66.968W and from 40.998N to 47.458N. New
England forests consist of three widely-recog-
nized forest types: boreal conifers (e.g., Abies
balsamea and Picea mariana), northern deciduous
hardwoods (e.g., Acer saccharum and Fagus
grandifolia) and mixed oak–hickory forests (e.g.,
Quercus alba and Quercus prinus). The distribution
of these forest types reflects regional climatic
conditions: boreal conifers are currently wide-
spread at higher elevations and in northern
regions of New England, northern deciduous
hardwoods are mainly distributed in the cooler
central uplands, and mixed oak–hickory forests
are found at lower elevations and more southerly
regions. Although the current relationship be-
tween climate and New England forests is partly
obscured by human activities and ecological
succession following land abandonment (e.g.,
Parshall et al. 2003), historical evidence (e.g.,
Shuman et al. 2004) has demonstrated a strong
relationship between climate and forest dynamic
in New England. To evaluate the effects of
historical climate variation on forest NPP and
biomass in the study region, we excluded all
land-cover types that are currently subject to
substantial human use.

Estimates of forest NPP and biomass by LPJ-GUESS
We used LPJ-GUESS (Smith et al. 2001, Sitch et

al. 2003; Hickler et al. in press) to estimate forest
NPP and biomass in New England based on
historical climate data. LPJ-GUESS is a general
ecosystem simulator that combines mechanistic
representations of plant physiological and bio-
geochemical processes and includes individual-
based demographics such as sapling establish-
ment and mortality, as well as the allocation of
assimilated carbon through photosynthesis to
leaf, root, sapwood and heartwood. LPJ-GUESS
simulates the growth of individual trees on a
number of replicate patches, where the height
and diameter growth of individuals are regulat-
ed by carbon allocation, conversion of sapwood
to heartwood and a set of prescribed allometric
relationships (Smith et al. 2001, Sitch et al. 2003).
Disturbance within each patch consists of both
fire (Sitch et al. 2003) and random, patch-
destroying disturbances (with a specified yearly
probability of occurrence of 0.01) that corre-
spond, for example, to storms and insect-attacks
(Smith et al. 2008). No additional human-specific
disturbances, such as forestry practices or clear-
cutting, were implemented in this study. LPJ-
GUESS has been applied in and validated by a
number of studies in estimating forest NPP,
biomass and carbon exchange at both regional
and local scales (e.g., Badeck et al. 2001, Hickler
et al. 2004, Morales et al. 2005, Smith et al. 2001,
2008).

A detailed description of LPJ-GUESS is avail-
able in Smith et al. (2001). The version used in
this study includes a number of updates, and a
brief description is given here. Further details are
provided by Hickler et al. (in press). LPJ-GUESS
has been updated to produce additional output
for analysis, apply various minor corrections to
detect numerical instabilities (in association with
the implementation of allometric constraints, for
example) and speed up the model runs. As an
additional bioclimatic limit for establishment,
Hickler et al. (in press) introduced a PFT-specific
minimum (as averaged over the growing season)
fraction of plant-available water holding capacity
in the first soil layer as a measure of the ability of
a sapling of a given PFT to tolerate drought
(Table 1). Shade tolerance parameters were also
calibrated to published forest succession pat-
terns. Finally, the number of days with rainfall
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each month has been added as an input variable.
In LPJ-GUESS, carbon uptake through plant

photosynthesis is estimated on a monthly-step
using coupled photosynthesis and water balance
models (Sitch et al. 2003, Gerten et al. 2004). The
amount of gross primary productivity (GPP)
fixed by each individual in each year is influ-
enced by the quantity of photosynthetically
active radiation captured, temperature, CO2

concentration and stomatal conductance. LPJ-
GUESS uses an empirical parameterization of the
boundary layer conductivity from Huntingford
and Monteith (1998) to relate stomatal conduc-
tance to transpiration and the amount of avail-
able water in the model’s 1.5 meter soil column.
Stomatal conductance is reduced when atmo-
spheric evapotranspirational demand exceeds the
maximum transpiration rate with fully open
stomata.

The NPP of a PFT is calculated as the
difference between its GPP and total respiration,
which is the sum of maintenance respiration for
its leaf (Rleaf ), root (Rroot) and sapwood (Rsap)
compartments, and growth respiration.

More specifically, the leaf respiration in LPJ-
GUESS is given by:

Rleaf ¼
0:015 3 VM for C3 plants

0:02 3 VM for C4 plants

�
ð1Þ

where VM is non-water-stressed rubisco capacity
(g C�m�2�d�1) under the assumption that leaf
nitrogen (N) is not limiting (Haxeltine and
Prentice 1996). The sapwood respiration is

expressed as:

Rsap ¼ Rco 3 k 3 CMSsap=CtoNsap 3 gtempair ð2Þ

where Rco is PFT-specific respiration coefficient
(Table 1) that is higher for boreal PFTs (Ryan
1991; Hickler et al. in press); k is a base respiration
rate parameter with value of 0.095218 (Smith et
al. 2001); CMSsap is sapwood C biomass on grid
cell area basis (kg C/m2); CtoNsap is PFT sapwood
C:N ratio; gtempair is the respiration temperature
response (Sitch et al. 2003), and equals 1 at 108C.

The root respiration is calculated in the
following way under the assumption that root
phenology follows leaf phenology:

Rroot ¼ Rco 3 k 3 CMSroot=CtoNroot 3 gtemproot ð3Þ

where CMSroot is fine root C biomass on a grid
cell area basis (kg C/m2); gtemproot is the res-
piration temperature response to a given soil
temperature.

Growth respiration is assumed to amount to
one-third of NPP (Ryan 1991), given by:

Rg ¼ 0:25 3ðGPP� RmÞ ð4Þ

where Rm is total maintenance respiration, i.e.,
the sum of Rleaf, Rroot and Rsap. The NPP (g C/m2)
of a PFT is thus expressed as:

NPP ¼ GPP� Rm � Rg: ð5Þ

The carbon assimilated through plant photo-
synthesis at the end of a simulation year is
reduced further by a fixed fractional allocation to
reproduction (e.g., flowers, cones, seeds and

Table 1. Definition and parameterization of the eight plant functional types under our simulations.

PFTs1 Phenology Morphology
Shade

tolerance DrT2 FiR3
SLA4

(m2 kg C)
Lon5

(years)
LeL6

(years) Rco
7

1. Spruce-fir Evergreen Needle Tolerant 0.23 0.08 13.1 300 5 2.0
2. White pine-cedar Evergreen Needle Intermediate 0.10 0.05 12.0 250 3 1.5
3. Red-jack pine Evergreen Needle Intolerant 0.20 0.09 11.0 180 2.5 2.0
4. Maple-beech-basswood Deciduous Broad Tolerant 0.30 0.14 43.4 350 0.6 1.5
5. Oaks Deciduous Broad Intermediate 0.28 0.14 33.0 400 0.6 1.5
6. Yellow birch-elm Deciduous Broad Intermediate 0.30 0.05 41.3 250 0.6 1.5
7. Hickories Deciduous Broad Intolerant 0.37 0.13 32.0 250 0.6 1.5
8. Aspen-birch Deciduous Broad Intolerant 0.20 0.16 30.3 200 0.6 2.0

Notes: 1 Spruce-fir consists of balsam fir (Abies balsamea), black spruce (Picea mariana) and red spruce (Picea rubens); Pine-
spruce-cedar consists of white pine (Pinus strobus), norway spruce (Picea abies (L.).) and white cedar (Thuja occidentalis); Red-jack
pine consists of jack pine (Pinus banksiana) and red pine (Pinus resinosa); Oaks consists of white oak (Quercus alba), chestnut oak
(Quercus prinus) and black oak(Quercus velutina); birch-elm consists of yellow birch (Betula alleghaniensis) and American elm
(Ulmus americana L.); Hickories consists of pignut hickory (Carya glabra), bitternut hickory (Carya cordiformis), mockernut hickory
(Carya tomentosa) and shagbark hickory (Carya ovata); Aspen birch consists of quaking aspen (Populus tremuloides) and paper
birch (Betula papyrifera). Shade tolerance (Smith et al. 2001; Hickler et al. in press); DrT2—drought tolerance (the value given
is the minimum fraction of available soil water in the topmost (0.5 m) soil layer, averaged over the growing season (i.e., days
with air temperature . 58C), necessary for a PFT to establish. (See Hickler et al. in press); FiR3—Fire resistance; SLA4—specific
leaf area; Lon5—Longevity; LeL6—Leaf longevity; Rco

7—Respiration coefficient.
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vegetative propagules) for mature plants. The
remaining carbon is then allocated to the living
tissue compartments as new biomass, including
leaf, root, sapwood and heartwood biomass.
Allocation is performed on an annual-step in
LPJ-GUESS, satisfying a set of allometric rela-
tionships specific to each PFT (see Smith et al.
2001 for details).

We ran LPJ-GUESS for New England following
the general modeling protocol for LPJ-GUESS
(e.g., Hickler et al. 2004). Simulations were
started from ‘‘bare ground’’ with 10 replicate
patches per cell for a total of 1106 simulation
years, i.e., a 1000 year spin-up period followed by
106 simulation years. The 1000-year spin-up is
viewed as the maximum years that are required
for the vegetation and soil and litter pools to
reach the equilibrium with the long-term climate
(Koca et al. 2006), and for forest biomass to reach
a steady state with generic patch-destroying
disturbances and fire. The spin-up simulations
used 30 years of monthly-step climate data for
the period 1901–1930 that were detrended using
a locally weighted scatter-plot smoothing algo-
rithm (Cleveland 1979). Following the model
spin-up, the model was run continuously using
sequential historical climate data for the period
1901–2006.

PFT definitions and parameterization
We defined vegetation in New England using

eight PFTs constructed on the basis of species
morphological, phenological, shade-tolerance,
and drought-tolerance traits (Tang et al. submit-
ted ) (Table 1). These PFTs consist of most
dominant species currently distributed in New
England. PFT-related parameters were assigned
values with reference to published literature
(e.g., Hickler et al. 2004, Withington et al. 2006)
or the USDA (United States Department of
Agriculture) Conservation Plant Characteristic
(CPC) database hhttp://plants.usda.gov.about_
characteristics.htmli. The sensitivity of the model
to parameters related to tree species life history
strategies (shade-tolerance, recruitment and mor-
tality under varying resource availability) within
LPJ-GUESS was investigated by Wramneby et al.
(2008). They showed that variation within
plausible ranges of the tree species parameters
investigated could alter the competitive balance
between species at a range of European forest

sites, but that the effect on ecosystem function-
ing, including ecosystem carbon fluxes and
storage, was low. The CPC database classifies
the relative tolerance of the trees to drought as
none, low, medium or high as well as their
relative ability to resprout, regrow or reestablish
from residual seeds after a fire. Details of
quantification of these classes are available in
Tang et al. (submitted ). Given the likelihood that
multiple PFTs might coexist in a grid cell, we
report the dominant forest type of a grid cell as
the PFT that has the highest leaf area index.

Climate, soil and CO2 data
We used monthly-step temperature (8C), pre-

cipitation (mm), percent sunshine (%) and wet
day frequency (days) for the period 1901–2006 as
input data to LPJ-GUESS. The temperature and
precipitation data were derived from PRISM 2.5-
arc second data sets (Daly et al. 2000) while
monthly-step percent sunshine and wet day
frequency were downscaled from the CRU TS
2.1 data sets at 0.5 degree resolution (Mitchell et
al. 2004). We interpolated all monthly-step
climate data into 30-arc second spatial resolution
by targeting the SRTM 30-arc second elevation
data (Farr and Kobrick 2000, Rosen et al. 2000).
Details of our downscaling approach are avail-
able from Tang and Beckage (2010). Both annual
mean temperature and total precipitation tended
to increase over New England as a whole at a
rate of 0.018C (R2 ¼ 0.24) (relative to the annual
mean of 4.78C in 1901) and 0.11% (R2 ¼ 0.10)
(relative to the annual total of 116 cm in 1901)
over the years 1901–2006, respectively.

Our soil texture data for running LPJ-GUESS
were derived from the USDA Soil Survey
Geographic (SSURGO) Database hhttp://soils.
usda.gov.survey.geography.ssurgoi. The SSUR-
GO data provide information about soil features
on or near the surface of the Earth and are in
vector digital and tabular format. The soil map
units are linked to attributes in the National Soil
Information System (NSIS) data base, which
gives the proportionate extent of the component
soils and their properties. We used ESRI ArcGIS
to link model grid cells to the SSURGO digital
soil map to query the representative percent
content of sand, silt and clay in each grid cell
from the NSIS tabular data base. We defined soil
texture in New England into coarse (clay , 18%
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and sand .65%), medium (clay ,35% and sand
,65% or sand �82% and clay .18%) and fine
(clay .35%) classes following the FAO rules
(FAO 1991) to match three of the nine soil texture
classes defined in LPJ-GUESS (Sitch et al. 2003).
Annual atmospheric CO2 concentration data for
the period 1901–2006 were increased smoothly
from 291 ppm in 1901 to 377 ppm in 2006
(Schlesinger and Malyshev 2001).

The sensitivity experiment simulations
We performed two simulation experiments to

examine the sensitivity of forest NPP in New
England to variation of temperature and precip-
itation. In each simulation experiment, we
allowed one input climate variable (e.g., temper-
ature) to vary over the years 1901–2006 while
others (e.g., precipitation and CO2 concentration)
were fixed at their 30-year mean levels for the
period 1971–2000.

Data for model comparisons
We compared the modeled forest NPP for New

England with MODIS NPP data by Zhao et al.
(2005) and FIA-based NPP estimates for similar
forests in the mid-Atlantic region of U.S. by Pan
et al. (2006). The MODIS NPP data used in this
study were gridded at 1-km resolution at the
global scale, providing a useful comparison for
the spatial distribution of our forest NPP
estimates across New England. In addition, the
MODIS NPP data cover the period of 2000–2006,
allowing us to compare annual variation in our
modeled and satellite-derived of NPP estimates.
The FIA-based forest NPP data (Pan et al. 2006),
on the other hand, are summarized by forest
cover type, which enabled us to compare our
modeled NPP in different forest types to these
empirical estimates.

We also compared our modeled forest biomass
for New England with U.S. forest biomass data
by Blackard et al. (2008) and FIA-based data for
similar forests in the mid-Atlantic region by
Jenkins et al. (2001). The U.S. forest biomass data
were gridded at a 250-meter resolution and
originally derived from measured inventory
plots using models that relate field-measured
response variables to plot attributes (Blackard et
al. 2008). Similar to the FIA-based NPP data, the
FIA-based biomass data (Jenkins et al. 2001) are
also tabular data summarized by forest cover

type.
We reprojected both MODIS NPP and U.S.

forest biomass data into geographic coordinates
and then regridded them onto our model grid
cells at 30-arc spatial resolution for comparison.
The values of NPP and biomass in each regrid-
ded cell are assigned the values of its nearest
neighbors in their original maps. The U.S. forest
biomass values are aboveground forest biomass
while our modeled forest biomass includes root
biomass; we therefore added root biomass that
approximates 20% of total biomass (e.g., Cairns
et al. 1997, Blackard et al. 2008) to U.S.
aboveground live forest biomass. To compare
the modeled NPP and biomass with FIA-based
estimates in the mid-Atlantic region, we grouped
our eight PFTs into five categories that corre-
spond to the forest types in Pan et al. (2006) and
Jenkins et al. (2001): spruce-fir, white-red-jack
pine, maple-beech-birch, oak-hickories and as-
pen-birch. When necessary, we converted all data
to standard units of g C�m�2�yr�1 (fluxes) for NPP
and Mg/ha (pools) for biomass, using a factor of
0.45 to estimate gram carbon from plant dry
weight (e.g., Olson et al. 1983).

Statistics for quantifying the agreement between
compared data sets

We used both Pearson correlation coefficient
and Tang’s OI index (Tang 2008), as appropriate,
to quantify the agreement between two sets of
compared data. To calculate the OI index, assume
that a and b refer to two sets of time-series
simulations. Let vector ai,j and bi,j(i¼ 1, 2, . . . , m, j
¼ 1, 2, . . . , n) be the simulated anomalies of an
ecological variable in grid cell i at time step j,
where m and n are the total number of grid cells
and time steps, respectively. Let ci,j be the vector
sum of ai,j and bi,j, and a be the acute angle
between the vector sum ci,j and the identity axis
(see Tang 2008). Then, the OI index of two
compared datasets is defined as:

OI ¼ 1� h=90:0o ð6Þ

where

h ¼ tan�1
Xm

i¼1

Xn

j¼1

jci;jjsinai;j=
Xm

i¼1

Xn

j¼1

jci;jjcosai;j

 !
:

The value of the OI index varies from 0 to 1 with
a value 0 (1) indicating that compared simula-
tions are opposite (identical). An OI index with a
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value near 0.5 suggests that the difference in the
amplitudes of variations between compared
simulations is large.

RESULTS

The modeled forest NPP and biomass for New
England

Our modeled forest NPP and biomass in the
baseline (1971–2000) condition varied spatially
and temporally across New England. The mod-
eled baseline forest NPP for New England
averages 428 g C�m�2�yr�1 for grid cells and
ranges from 333 to 541 g C�m�2�yr�1. Forest NPP
decreases from south to north in New England
(Fig. 1A). The highest annual NPP occurs in the
states of Connecticut and Rhode Island and in
eastern Massachusetts where annual mean tem-
perature is relatively higher (.8.78C) than other
sub-regions in New England. The lowest annual
NPP occurs in northern and northwestern Maine
where annual mean temperature is relatively low
(,1.48C) (Fig. 1A, D). The modeled forest
biomass for New England averages 135 Mg/ha
for grid cells and ranges from 77 to 242 Mg/ha.
Forest biomass also decreases from south to
north (Fig. 1B). The highest biomass occurs in the
corner of southeastern Massachusetts and the
lowest biomass occurs in northwestern Maine.
The modeled forest biomass is relatively low
(,143 Mg/ha) at high elevations such as in the
Green Mountains of Vermont and the White
Mountains of New Hampshire (Fig. 1B, D).

The modeled forest NPP and biomass for New
England depend heavily on the composition of
the simulated vegetation in terms of PFTs (Fig.
1C) as also illustrated in other studies (e.g.,
Bondeau et al. 1999, Jenkins et al. 2001). For
example, the modeled NPP for spruce-fir (i.e.,
areas dominated by spruce-fir) ranges from 339
to 473 g C�m�2�yr�1 and has the lowest mean of
395 g C�m�2�yr�1 among all eight PFTs simulated.
In contrast, NPP in oak forests range from 391 to
574 g C�m�2�yr�1 and has the highest mean of 468
g C�m�2�yr�1 (Table 2). In addition, the modeled
NPP is generally higher in deciduous forests
(e.g., oak-hickory, maple-beech-basswood and
aspen-birch forests) than in evergreen forests
(e.g., spruce-fir and white-red-jack pine) (Table
3). Similar to our NPP estimates, oak forests have
the highest mean biomass of 153 Mg/ha while

red-jack pine forests have the lowest mean of 118
Mg/ha. The modeled biomass is also higher in
deciduous forests than in evergreen forests
except for in white pine-cedar (Table 2).

Our modeled average annual NPP for New
England tended to decrease at a rate of 0.32 g
C�m�2�yr�1 (R2 ¼ 0.02) in the period 1901–1949
but increase at a rate of 0.52 g C�m�2�yr�1 (R2 ¼
0.09) in the period 1950–2006 (Fig. 2A). Forest
biomass tended also to decrease at a rate of 0.11
Mg/ha (R2 ¼ 0.74) per year over the years 1901–
1949 but increase at a rate of 0.25 Mg/ha (R2 ¼
0.95) per year over the years 1950–2006 (Fig. 2B).

Comparison between modeled and reported forest
NPP data

Three distinct discrepancies emerge when our
model simulations were compared to MODIS
NPP estimates for New England (Zhao et al.
2005). First, our modeled NPP estimates over the
period 2000–2006 have a relatively narrow range
from 262 to 627 g C�m�2�yr�1 while MODIS NPP
estimates have a wider range from 39 to 1403 g
C�m�2�yr�1 at a grid cell level (Fig. 3A, B).
Second, our modeled NPP estimates decrease
from south to north while MODIS NPP estimates
do not show such a latitudinal trend. Third,
MODIS NPP estimates in western New Hamp-
shire and in mid- and southern Vermont are
higher than in surrounding areas while such a
pattern does not exist in the modeled NPP
estimates (Fig. 3A, B). The modeled forest NPP
for the whole of New England averages 437 g
C�m�2�yr�1 over the years 2000–2006, which is
about 137 g C�m�2�yr�1 lower than the MODIS
NPP estimates, averaging 574 g C�m�2�yr�1 (Fig.
3C).

Our modeled inter-annual variation in NPP
over the years 2000–2006 corresponds to the
patterns in MODIS NPP data in most grid cells.
For example, the calculated OI indices (Tang
2008) in 89.7% of the study region is greater than
0.6 (Fig. 3D), suggesting that (1) the sign of
compared annual NPP anomalies in each year
relative to its 7-year (2000–2006) mean is
identical in those grid cells between modeled
and MODIS NPP estimates, and (2) the ampli-
tudes of changes in annual NPP in each year
relative to its 7-year mean are similar in those
grid cells when the two datasets were compared.
Nevertheless, the modeled annual NPP varia-
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tions do not correspond well with those reflected

in MODIS NPP data in some regions such as

southern Connecticut, Rhode Island and the

southeastern Massachusetts (Fig. 3D). In these

regions (about 2.5% of the study region), the

calculated OI indices are lower than 0.5, suggest-

ing that the variations of our modeled annual

NPP are opposite of those in MODIS NPP data

over the years 2000–2006. The overall good

agreement between our modeled annual NPP

variations and those from MODIS NPP data,

however, is confirmed by the high correlation (R2

¼ 0.86, p , 0.01) of mean annual NPP estimates

(Fig. 3C).

Our modeled forest NPP for New England

agrees well with FIA-based NPP estimates from

Fig. 1. The spatial patterns of modeled (A) forest NPP, (B) biomass and (C) dominant plant functional types

(PFTs) for New England. The data are 30-year (1971–2000) mean annual NPP and biomass. The dominant PFT in

a grid cell is defined as the PFT that has the highest leaf area index. (D) The topography and the states of New

England. New Hampshire and Rhode Island are abbreviated to ‘‘NH’’ and ‘‘RI’’, respectively.
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Table 2. The modeled forest NPP and biomass by dominant plant functional type.

Plant functional types

Forest NPP (g C�m�2�yr�1) Forest biomass (Mg/ha)

Min Mean Max Std Min Mean Max Std

1. Spruce-fir 339 395 473 28 116 120 123 2
2. White pine-cedar 353 405 482 27 141 147 150 3
3. Red-jack pine 361 423 495 29 114 118 121 2
4. Maple-beech-basswood 354 408 492 32 142 149 154 4
5. Oaks 391 468 574 44 146 153 157 3
6. Yellow birch-elm 360 435 522 41 130 140 147 4
7. Hickories 399 463 562 5 121 127 134 3
8. Aspen-birch 388 430 510 27 124 129 133 3

Note: The forest NPP and biomass values are 30-year (1970–2000) mean values.

Table 3. Comparison between modeled and FIA-based NPP estimates by forest cover type.

Forest cover types

Modeled NPP (g C�m�2�yr�1)1 FIA-based NPP (g C�m�2�yr�1)2 NPP differences3

Min Mean Max Min Mean Max Magnitude %

1. Spruce-fir 362 403 473 199 323 436 80 25
2. White-red-jack pine 373 413 494 232 399 483 14 4
3. Maple-beech-birch 354 426 517 266 446 489 �20 4
4. Oak-hickories 391 470 535 273 466 499 4 0.9
5. Aspen-birch 403 437 510 256 391 508 46 12

Notes: 1 The modeled NPP for each forest cover type is an average value for the period 1982–1997, which corresponds to the
period of FIA-based inventory data measured for the six states in New England. 2 FIA-based annual mean NPP in the mid-
Atlantic region of U.S. is from Pan et al. (2006) except for minimum and maximum annual NPP and annual mean NPP in aspen-
birch, which are from Jenkins et al. (2001). 3 Mean NPP difference is measured in both magnitude and percent change relative to
modeled mean NPP.

Fig. 2. The modeled trend of (A) forest NPP and (B) biomass for New England over the years 1901–2006.
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similar forests in the mid-Atlantic region of U.S.

(Jenkins et al. 2001, Pan et al. 2006). For example,

our modeled forest NPP averages 413 g

C�m�2�yr�1 in white-red-jack pine, 426 g

C�m�2�yr�1 in maple-beech-birch and 470 g

C�m�2�yr�1 in oak-hickory, approximating (dif-

ference , 4%) FIA-based NPP estimates of 399,

446 and 466 g C�m�2�yr�1 from similar forests in

the mid-Atlantic region, respectively (Table 3).

However, our modeled NPP in spruce-fir (aver-

ages 403 g C�m�2�yr�1) and in aspen-birch

(averages 437 g C�m�2�yr�1) forests are greater

than FIA-based NPP estimates that average 323 g

C�m�2�yr�1 in spruce-fir and 391 g C�m�2�yr�1 in

Fig. 3. Comparison between (A) modeled and (B) MODIS NPP (g C�m�2�yr�1) data (Zhao et al. 2005) for New

England over the years 2000–2006. The data in (A) and (B) are averaged values for the period 2000-2006. (C)

Comparison of modeled (gray boxes) and MODIS NPP (black boxes) estimates for the whole New England over

the period 2000–2006. (D) The spatiotemporal agreement between modeled and MODIS NPP estimates across

New England measured by the OI indices.
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aspen-birch (Table 3). In addition, our modeled
forest NPP values are less spatially variable than
FIA-based NPP estimates as illustrated by the
lower limits of modeled NPP values, which are
greater than those of FIA-based NPP estimates
while the upper limits are similar in all forests
(Table 3).

Comparison between modeled and reported forest
biomass data

Our modeled distribution of mean forest
biomass for New England agrees well with U.S.
forest biomass data for New England. For
example, estimates of forest biomass from both
approaches are between 124 and 171 Mg/ha in
most areas (84.9% for model simulation and
63.4% for U.S. forest biomass data) of New
England, especially at low elevations such as in
southern New England and southern Maine (Fig.
4A, B). The good agreement between our
modeled and U.S. forest biomass estimates for
New England is indicated by the close corre-
spondence of average forest biomass between the
two approaches: 143.2 Mg/ha from the model
simulation and 142.1 Mg/ha from U.S. forest
biomass data. In addition, both modeled and U.S.
forest biomass estimates in all grid cells for New
England appear to be approximately normally
distributed (Fig. 4C, D) with biomass values
clustered symmetrically around their mean.

Localized differences in forest biomass esti-
mates for New England still exist, however,
between our modeled and U.S. forest biomass
data. First, U.S. forest biomass estimates in the
Green Mountains of Vermont and the White
Mountains of New Hampshire are clearly higher
(.170 Mg/ha) than our modeled forest biomass
estimates (,170 Mg/ha) in these areas (Fig. 4A,
B). Second, our modeled forest biomass estimates
in eastern Maine are higher (.120 Mg/ha) than
those in U.S. forest biomass data (,120 Mg/ha).
This discrepancy was reversed in the corner of
northwestern Maine and northern New Hamp-
shire. Third, annual average biomass by grid cells
has a lower variance in the modeled datasets
compared with the observed data: the modeled
biomass has a relatively narrow range from 79 to
241 Mg/ha while the U.S. forest biomass data
have a wider range from 31 to 264 Mg/ha (Fig.
4C, D).

Our modeled forest biomass is less than FIA-

based forest biomass estimates for similar forests
in the mid-Atlantic region (Jenkins et al. 2001)
(Fig. 5). For example, our modeled biomass
ranges from 121.9 Mg/ha in spruce-fir to 146.7
Mg/ha in maple-beech-birch. In contrast, FIA-
based biomass estimates are 63.4 Mg/ha higher in
spruce-fir (average 185.3 Mg/ha) and 107.2 Mg/
ha higher in maple-beech-birch (average 253.9
Mg/ha). In forests dominated by white-red-jack
pine, oak-hickory and aspen-birch, our modeled
forest biomass is about 73 to 103 Mg/ha lower
than FIA-based biomass estimates in the mid-
Atlantic region.

The sensitivity of NPP to the variation of
temperature and precipitation

Simulations from our sensitivity experiment
indicated that monthly NPP was positively
correlated with monthly mean temperature in
late spring (April-May) and fall (e.g., October)
but negatively correlated with summer (June-
July-August) and early fall (September) temper-
ature in New England (Fig. 6A–G). For example,
monthly NPP in the study period is modeled to
increase at a rate of 15.6 g C/m2 (R2 ¼ 0.92) in
April and 5.0 g C/m2 (R2 ¼ 0.27) in May if
temperature increases by 18C. In contrast, month-
ly NPP is modeled to decrease at a rate of 13.3 g
C/m2 (R2¼ 0.92) in June, 18.2 g C/m2 (R2¼ 0.92)
in July, 15.6 g C/m2 (R2¼0.94) in August and 10.2
g C/m2 (R2 ¼ 0.88) in September respectively if
temperature increases by 18C.

Monthly NPP in the growing season (May-
September) was positively correlated with
monthly precipitation (Fig. 6H–I). The strength
of this positive relationship was stronger in
summer (June-July-August) and September than
in May. For example, monthly NPP is modeled to
increase at rate of 0.50 g C/m2 (R2¼ 0.36) in June,
1.28 g C/m2 (R2¼ 0.27) in July, 1.14 g C/m2 (R2¼
0.42) in August, and 0.91 g C/m2 (R2 ¼ 0.26) in
September respectively when monthly precipita-
tion increases by 1%. In contrast, the increasing
rate is smaller in May (0.03 g C/m2 (R2¼ 0.01)) if
monthly precipitation increases by 1%. In other
months (October to April), the effects of climatic
variation in temperature or precipitation on
monthly NPP are negligible.
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DISCUSSION

The accuracy of forest NPP estimates

The agreement between our modeled NPP and

FIA-based estimates justifies the model’s utility

for estimating forest NPP for New England. Our

results are also in overall agreement with

previous studies. For example, the measured

NPP in pine dominated stands in Harvard forest

(located in Petersham, Massachusetts) is 377 g

C�m�2�yr�1 (Aber et al. 1995), close to (difference

, 7%) the modeled NPP of 405 g C�m�2�yr�1 for

Fig. 4. Comparison of modeled biomass (A and C) with U.S. forest biomass (B and D) data (Blackard et al.

2008) for New England. The modeled forest biomass in each grid cell (A) is average annual mean biomass for the

period 1990–2003, a period corresponding to the period of measured FIA data. The data in (B) and (D) are total

biomass with the addition of root biomass, approximating 20% of total biomass (see Cairns et al. 1997, Blackard

et al. 2008). (C) and (D) show the distribution of frequencies of modeled and FIA biomass values from all grid

cells across New England.
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white pine in this study. Using a different model,
Chertov et al. (2009) found that NPP for black
spruce averages 371 g C�m�2�yr�1, approximating
(difference , 6%) the modeled NPP of 395 g
C�m�2�yr�1 for spruce-fir in this study. Our
modeled NPP values are also within the range
of FIA-based estimates for cool temperate and
boreal forests. Gower et al. (2001) reported that
the total NPP ranges from 52 to 868 g C�m�2�yr�1
(average 424 g C�m�2�yr�1) for the boreal forest
biome, similar to our modeled values. Bond-
Lamberty et al. (2004) reported that average NPP
in black spruce-dominated boreal forests in areas
west of Thompson (Canada), ranged from 106 to
406 g C�m�2�yr�1 for dry stands and from 72 to
534 g C�m�2�yr�1 for wet stands. NPP for
hardwoods were reported to be 505 g C�m�2�yr�1
(Aber et al. 1995) and 565 g C�m�2�yr�1 in
Harvard forest (Curtis et al. 2002), close to our
modeled NPP in their areas, which ranged from
450 to 500 g C�m�2�yr�1 (Fig. 1A).

Our modeled forest NPP is generally lower for
evergreen forests than deciduous forests, which
is consistent with other studies. For example,

Gower et al. (2001) found that above ground NPP
was consistently higher for deciduous than for
evergreen boreal forests in boreal regions of
Canada. Brown and Schroeder (1999) found that
aboveground production of woody biomass for
hardwood forests in Maine averaged 366 g
C�m�2�yr�1, which is higher than for conifer
forests, which average 222.7 g C�m�2�yr�1.

We suggest that LPJ-GUESS might better
quantify forest NPP for New England than
MODIS derived NPP estimates based on our
comparison to FIA-based estimates of NPP (e.g.,
Jenkins et al. 2001). Other comparisons also
indicate that MODIS NPP estimates tend to be
larger than the modeled NPP estimates for New
England forests (Table 4). Pan et al. (2006) argued
that MODIS NPP might overestimate NPP for
coniferous mixed forests in the mid-Atlantic
region and inferred that the radiation conversion
efficiency used in the MODIS NPP algorithm
might be too large for vegetation in the mid-
Atlantic region. We suspect that this might also
be the case in New England. Nevertheless, our
modeled inter-annual NPP variation in each

Fig. 5. Comparison between modeled and FIA-based forest biomass estimates in similar forests. The modeled

data are for New England and the FIA-based data are for the mid-Atlantic region of U.S. (Jenkins et al. 2001). ‘‘W-

R-J pine’’ ; white-red-jack pine; ‘‘Maple-beech’’ ; ‘‘Maple-beech-birch’’.
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forest type is strongly correlated to the variation

in the MODIS dataset as confirmed by the OI

indices and correlation coefficients (Table 4). The

strong agreement between these two completely

independent estimation methods suggests that

both approaches likely capture the inter-annual

Fig. 6. The sensitivity of forest NPP to the variation of temperature alone in months from April to October (A–

G), and to the variation of precipitation alone in months from May to September (H–L) over the years 1901–2006.

We did not plot those months in which monthly NPP did not show any statistically significant effects such as in

the late autumn (e.g., November), winter and early spring (e.g., March).

Table 4. Comparison between modeled and MODIS NPP estimates.

Plant functional types
Model
NPP

MODIS
NPP

OI
index

Correlation
coefficient

Mean
Dev1

Mean
Dev2

DDev
(absolute)

1. Spruce-fir 387 563 0.71 0.62 28.5 40.6 12.1
2. White pine-cedar 409 555 0.71 0.65 28.6 44.3 15.3
3. Red-jack pine 415 567 0.70 0.62 26.7 42.0 15.3
4. Maple-beech-basswood 414 567 0.74 0.69 40.4 44.9 4.9
5. Oaks 497 609 0.68 0.53 45.6 36.6 8.9
6. Yellow birch-elm 451 568 0.73 0.66 50.8 41.6 9.2
7. Hickories 493 602 0.71 0.61 46.1 62.6 16.5
8. Aspen-birch 431 566 0.73 0.68 32.8 45.3 12.5

Notes: NPP is measured in g C�m�2�yr�1. ‘‘Mean Dev’’ represents the average NPP deviation from the 7-year mean calculated
at a grid cell level. ‘‘Mean Dev1’’ and ‘‘Mean Dev2’’ are for modeled and MODIS NPP, respectively. DDev is the absolute
difference between two average NPP deviations.
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variation of NPP in New England in response to
varying climatic conditions.

Although we suspect that MODIS NPP data
might overestimate forest NPP for New England,
the MODIS NPP algorithm is a powerful tool for
monitoring terrestrial NPP because of its spatial
coverage and temporal continuity (Pan et al.
2006, Zhao and Running 2010). While the
application of the MODIS algorithm may be
reasonable at global scales (e.g., Nemani et al.
2003), MODIS NPP estimates can be improved
through (1) finer vegetation classifications and
more precise parameterization of the radiation
conversion efficiency, and (2) accurate quantifi-
cation of the effects of soil water condition on
forest NPP (Pan et al. 2006). In addition,
improved climate data will contribute to a
greater accuracy of MODIS NPP estimates.

The accuracy of forest biomass estimates
The agreement between our modeled and U.S.

forest biomass data for New England indicates
the utility of the model for estimating potential
forest biomass across New England. In a review
of biomass estimation studies for boreal forests,
Pregitzer and Euskirchen (2004: Fig. 4) reported
that the biomass ranged from approximately 44
to 176 Mg/ha across all boreal age classes.
Chertov et al. (2009) similarly found that black
spruce biomass in the central Canadian boreal
forest could vary between 24.2 and 169.4 Mg/ha
for well drained sites and between 48.4 and 204.6
Mg/ha for poorly drained sites. These represent
wider ranges than were simulated by our model:
116 to 123 Mg/ha for spruce-fir and 114 to 121
Mg/ha for red-jack pine forests. Even in the mid-
Atlantic region, Jenkins et al. (2001) reported that
forest biomass ranged from 101 to 326 Mg/ha, a
range wider than our modeled forest biomass
ranges across all forests (Table 2). Thus, while
our model reproduced mean biomass values, it
did not simulate the full range of regional
variability.

Part of the discrepancies between our modeled
and FIA-based forest biomass estimates in the
mid-Atlantic region can likely be explained by
differences in the biomass components consid-
ered by the two approaches. LPJ-GUESS calcu-
lates forest biomass at a stand as the summation
of leaf, fine root, sapwood and heartwood
biomass compartments, which evolve dynami-

cally in the course of a simulation. The additional
compartments like branches, twigs, stumps,
coarse roots and standing dead trees included
in the FIA-based approach (Jenkins et al. 2001)
are implicit in the more generalized compart-
ment set represented in the model. In addition,
the difference in climatic condition between New
England (comparatively shorter growing season
and lower annual mean temperature) and the
mid-Atlantic region (comparatively longer grow-
ing season and higher annual mean temperature)
contributes to the lower modeled biomass for
New England relative to FIA-based estimates for
the mid-Atlantic region.

The modeled spatiotemporal pattern of forest NPP
and biomass

Our modeled temporal dynamics of forest NPP
and biomass in New England, i.e., decreases over
the years 1901–1949 but increases over the years
1950–2006 (Fig. 2), are broadly consistent with
findings in other studies. Bachelet et al. (2001)
found that the total carbon storage (a summation
of live vegetation and soil carbon) in U.S. forests
remained stable in the early part of the 20th
century until about 1940 and then began to
increase until 1971. Such findings indicate some
correspondence with our modeled temporal
dynamics of forest biomass in New England.
For example, our modeled forest biomass in New
England increased at a rate of 0.17 Mg/ha per
year (R2 ¼ 0.81) over the years 1950–1971 with
annual mean temperature decreasing at a rate of
0.058C (R2 ¼ 0.33) per year in this period (Fig.
7A). This cooling favored carbon sequestration
(e.g., Bachelet et al. 2001). In addition, Liu et al.
(2006) simulated that the biomass density in
three eco-regions in the Appalachian region
increased by a range from 63.4 to 102.8 Mg C/
ha over the years 1972–2000. Our modeled
increases in forest biomass over the years 1950–
2006 also agree well with the reported increase in
plant growth on timber land in the northern U.S.
in the period 1953–1997 (USDA Forest Service
2000).

At decadal or shorter temporal scales, howev-
er, our modeled NPP dynamics differ from
findings in others studies. For example, Nemani
et al. (2003) reported that global NPP increased
by 6.2% (3.42 Pg C) between 1982 and 1999.
Regional studies in North America and in the
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U.S. reported an overall significant increase in
NPP of 0.03 Pg C/yr over the years 1982–1998
(Hicke et al. 2002) but the largest increases
occurred in the central and southeastern United
States, and northwestern North America. How-
ever, our modeled forest NPP in New England
did not show an increasing trend in this period
(Fig. 7B). More specifically, our modeled forest
NPP showed an increase in the 1980s but a
decrease in the 1990s (Fig. 7B). In the 1980s, both
summer temperature and precipitation tended to
increase concurrently, resulting in an increase of
forest NPP. In the 1990s, summer temperature in
New England continued to increase while sum-
mer precipitation tended to decrease, leading to a
decreasing forest NPP (Fig. 7B).

The sensitivity of forest NPP to the variation of
temperature and precipitation

Previous studies have found that the carbon
balance of a terrestrial ecosystem is particularly
sensitive to warming in spring and autumn (e.g.,
Bergeron et al. 2007) as this increases plant
photosynthesis (Piao et al. 2008). The positive
relationship between forest NPP and variation of
monthly temperature in April, May and October
in our simulations are consistent with this
general pattern, resulting primarily from a
lengthening of the growing season, i.e., an earlier
onset in the spring and longer duration in the fall

(e.g., Myneni et al. 1997, Linderholm 2006,
Schwartz et al. 2006). However, summer temper-
ature was negatively correlated with forest NPP
in New England, largely because warming can
increase soil moisture deficit and drought condi-
tions (Fig. 8A–C). Forest NPP in the growing
season was positively correlated with monthly
precipitation. Increases in precipitation increases
soil moisture, ameliorating potential drought
conditions. For example, our modeled soil
moisture content (as a fraction of soil water
holding capacity) at the top 50 cm of soil layers
was strongly and positively correlated with
monthly precipitation in May, June, July, August
and September (Fig. 8D–H).

The limitations of the model’s application to New
England

Our comparisons suggest that the regional
ecosystem model LPJ-GUESS can provide useful
estimates of forest NPP and biomass for New
England. This model incorporates not only
climatic and soil information, but in this study
also was parameterized using fine-scale defini-
tions of PFTs compared to global models. The
model as it was used in this study does not,
however, simulate the effects of human related
activities and other factors on forest NPP and
biomass. This may explain why the modeled
forest NPP and biomass values have a more

Fig. 7. (A) The modeled variability of forest biomass and annual mean temperature in New England over the

years 1949–1972. (B) The modeled trend of annual NPP, summer temperature and precipitation in New England

over the years 1982–1999. P ; summer precipitation and T ; summer temperature. For plotting, we converted

summer temperature and precipitation into dimensionless Z-scores by subtracting the population mean from

each individual observation and then dividing by their standard deviation.
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narrow range compared to those estimates based
on MODIS and FIA data. A wide range of
MODIS NPP and FIA-based NPP and biomass
estimates reflect both the spatial variability of
climate and the effects of human land use on
forests. As a result, these empirical estimates
produce a wider range of values than found in
our modeled data. Therefore, our modeled forest
NPP and biomass are more representative of
potential NPP and biomass as determined by
climate and soil condition.

CONCLUSION

Our modeled forest NPP for New England
agrees well with FIA-based estimates from
similar forests in the mid-Atlantic region. The
modeled annual variability of forest NPP is also
significantly correlated with MODIS NPP esti-
mates. The modeled forest biomass for New
England is in agreement with the U.S. forest
biomass data for New England but our model
estimates are less than FIA-based estimates from
the mid-Atlantic region. Both our modeled NPP
and biomass, however, are within the ranges of
reported NPP and biomass values, supporting

the use of the model for New England forests.
Vegetation models have inherent advantages

in predicting the long-term pattern of forest NPP
and biomass in response to climate change
compared to empirical FIA-based approaches.
The inclusion of the effects of human land use
activities must be considered, however, in order
to improve the accuracy of model-based esti-
mates of forest NPP and biomass. Given the
discrepancies in forest NPP and biomass esti-
mates between these different approaches, con-
tinued efforts at inter-comparison and cross-
validation are still needed for reducing the
uncertainties in the quantification of the terres-
trial carbon cycle.
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