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1 Abstract

The predictability of many complex systems is limited by computational irre-
ducibility, but we argue that the nature of computational irreducibility varies
across physical, biological and human social systems. We suggest that the com-
putational irreducibility of biological and social systems is distinguished from
physical systems by functional contingency, biological evolution, and individ-
ual variation. In physical systems, computationally irreducibility is driven by
the interactions, sometimes nonlinear, of many different system components
(e.g., particles, atoms, planets). Biological systems can also be computationally
irreducible because of nonlinear interactions of a large number of system com-
ponents (e.g., gene networks, cells, individuals). Biological systems additionally
create the probability space into which the system moves: Biological evolution
creates new biological attributes, stores this accumulated information in an or-
ganism’s genetic code, allows for individual genetic and phenotypic variation
among interacting agents, and selects for the functionality of these biological
attributes in a contextually dependent manner. Human social systems are bi-
ological systems that include these same processes, but whose computational
irreducibility arises as well from sentience, i.e., the conscious perception of the
adjacent possible, that drives social evolution of culture, governance, and tech-
nology. Human social systems create their own adjacent possible through the
creativity of sentience, and accumulate and store this information culturally,
as reflected in the emergence and evolution of, for example, technology. The
changing nature of computational irreducibility results in a loss of predictabil-
ity as one moves from physical to biological to human social systems, but also
creates a rich and enchanting range of dynamics.
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2 Introduction

Systems change through time–whether the system of interest is a galaxy, a forest
ecosystem, a social network, or a circulatory system. This continuous process of
change in the system state can be thought of as computation [35]: the state of
the system is updated based on its current and past states. In a forest, for exam-
ple, the growth and recruitment of trees is dependent on the spatial arrangement
of trees through processes such as competitive interactions, light shading, and
seed dispersal as well as environmental externalities [4]. In some systems, pre-
cise predictions of the future state of the system can be made without having
to perform the intervening computations. In these systems, prediction is possi-
ble because simplified models exist that can be used to bypass the intervening
computations intrinsically performed by the system . Astronomical models, for
example, can predict the spatial and temporal distribution of sunlight on earth,
and describe the past orbital forcing of the climate system [20]. In other systems,
like a forest ecosystem, predicting the detailed state of the system is very diffi-
cult without allowing the system to update itself on its own characteristic time
scale [3]. Systems that require the computation of intervening system states on
their characteristic time scale in order to predict future states are computation-
ally irreducible. Computational irreducibility therefore implies the absence of
simplifying models that can reproduce future system states without information
loss. The dynamics of a system that is computationally irreducible cannot be
known without allowing for the evolution of the system on its own time scale.
While any process that is computationally irreducible may seem to imply an
equivalent degree of unpredictability a priori, we suggest that this is not the
case. We argue that the processes that drive computational irreducibility differ
across physical, biological and social systems, and that these differences result in
some forms of computational irreducibility being ’more irreducible’ than others.
Computational irreducibility does not imply that predictions are impossible,
but that they come at the cost of information loss. In cellular automata, for
example, cells can be spatially aggregated into larger units with an associated
set of updating rules in a process of coarse-graining [18] [19]. Prediction in
some computationally irreducible systems is possible through coarse-graining,
but comes at the cost of information loss through spatial and temporal averag-
ing. We suggest, then, that gains in prediction require increasing information
loss in physical, biological, and human social systems, and thus some systems
are more computationally irreducible than others. We argue that the basis for
these differences lie in the different processes operating in physical, biological,
and human social systems.

3 Physical systems

Physics has been particularly successful at prediction. Physicists, for example,
were able to predict the existence of black holes from a singularity in the equa-
tions describing the physical system [31] [32]. Engineers routinely use the laws
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of physics to design and build skyscrapers, bridges, airplanes, and to send space-
craft to distant planets, and these efforts are usually successful. We don’t mean
to imply that physics is axiomatic and its laws universal but rather that, while
mathematical representations of physical laws may be only approximate descrip-
tions of underlying physical reality, the approximations can be quite good. The
approximate laws of physics seem to be much more useful for prediction than
the approximate laws of biological or human social systems.

We argue that physical systems tend to be more predictable than living sys-
tems because computational irreducibility in these systems is driven by a smaller
set of less complex processes. Computational irreducibility in physical systems
largely results from the interactions of particles or objects governed by a fixed
set of rules, analogous to simple cellular automata [35]. Physical systems can
become computationally irreducible with a relatively small number of interact-
ing objects, e.g., the three body problem [35], and systems with large numbers
of interacting components are likely to be computationally irreducible. The
evolution of a large volume of a gas, for example, may be computational irre-
ducible even as the gas molecules interact with each other and their surrounding
environment according to known physical laws. An approximate, statistical de-
scription of the mean state of a gas is still possible, however, without an exact
description of the velocities and locations of each molecule: the temperature
and pressure of a gas can be described using the ideal gas law. Physical sys-
tems that are computationally irreducible can often become predictable from
a macro-level perspective due to the averaging of a very large number of sepa-
rate interactions, albeit with the loss of information. This is analogous to the
coarse-graining of cellular automata described earlier.

The computational irreducibility of physical systems is related to the Halting
Problem in a Universal Turing Machine [34]. A computation is said to be
incompressible when the sequential behavior of a computer program cannot be
computed in any shorter way than to allow the program to run and note its
successive states. The central features of a Turing machine include a head with
a set of pre-stated symbols standing for internal states, a tape marked in squares
of perhaps infinite length, a prestated alphabet of symbols (e.g., 0 and 1) that
can be read from and written to the tape by the reading head [10]). Given a
set of symbols on the tape, and the reading head over one square with a symbol
written on it, the head reads from the tape and, depending upon the symbol,
its internal state will not move or move one square to the left or right, erase the
symbol on the square below it, write a symbol on that square and go from one
internal state to another internal state. Then this set of operations will iterate.
Given any initial state of the tape and reading head, the next states of the tape
and head can be computed for 1, 2, 3, . . . , N finite number of steps ahead. A
Turing machine is a subset of classical physics.

We define the computationally irreducibility of physical systems and other
Turing-like systems as first order computationally irreducible. This is the sim-
plest mode of computational irreducibility in that the set of rules governing
system evolution and the possible states of the particle or node are fixed, e.g.,
the set of potential states of a cell in a simple automaton, and do not change
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as the system itself evolves. We suggest that coarse-graining approaches to
prediction would be most effective in systems with first order computational
irreducibility, i.e., they would gain greatest predictive capacity with minimal
information loss. We argue that biological systems and human social systems
have a different set of processes governing system evolution than those found in
physical systems and associated with first order computational irreducibility.

4 Biological Systems

Biological systems are computationally irreducible for qualitatively different rea-
sons than physical systems. While the same processes that yield first order com-
putational irreducibility in physical systems also operate in biological systems,
i.e., large number of interacting components, the set of rules governing these in-
teractions and the potential states of the system components (e.g., cells in a CA,
particles, organisms) evolve along with the overall state of the system. We refer
to this as second order computational irreducibility–a more complex computa-
tional irreducibility than the first order computational irreducibility. The second
order nature of the computational irreducibility of biological systems–meaning
that the rules and set of states of fundamental units can evolve–follows from
nearly universal attributes of biological systems: i) contingency of the function
and selective value of biological attributes on interactions with other organisms
and their environment, ii) the creation of new attributes and functions through
biological evolution, and iii) individual variability in biological attributes even
among organisms of the same species. Note that we use the term ‘biological
evolution’ to refer to Darwinian evolution in biological systems as distinguished
by ‘system evolution’, which describes changes in the state of a system through
time, although biological evolution often leads to system evolution of biological
systems.

Functional contingency. Biological attributes have a set of potential func-
tions, and the set of these functions is contextually dependent on interactions
with other organisms and the environment. A subset of the functions associated
with an attribute may be useful in the current context of an organism and its in-
teractions with other organisms and its environment, while other function of an
attribute may be useful in other future (or past) contexts. Feathers in dinosaurs,
for example, may have initially functioned in thermal regulation and only later
provided additional functionalities that were coopted for flight [6] [33]. The
swim bladder, a sac found in some fish that is partly filled with air and partly
with water and the ratio of which determines and adjusts neutral buoyancy in
the water column, is believed to have arisen from the lungs of lung fish, provid-
ing a new functionality to an existing structure [29]. Even the human capacity
for reason and logic may have been a new functionality of biological traits with
origins in the context of group dynamics of social organisms [26]. Some compo-
nents of the set of functions of existing biological attributes might have causal
consequences that are of selective significance in new environments. Functions
of biological structures that are of no selective advantage in the current environ-
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ment but that become selectively advantageous in later environments, typically
with a new functionality, are referred to as pre-adaptations or exaptations. We
assert that the potential functions of biological attributes are both indefinite
in number and unorderable, and, importantly, that no algorithm can list them
all. We argue that this means that the set of rules governing system evolu-
tion changes and contributes to the second order computational irreducibility
of biological systems.

Biological evolution. Biological evolution is a central process that distin-
guishes the evolution of the biosphere from other physical systems [24]. Biolog-
ical systems create and accrue attributes such as new structures, biochemical
pathways, gene regulatory networks, etc. through biological evolution. These
attributes provide the basis for biological function and exaptations of the pre-
vious section. The process of biological evolution is immensely creative and
unpredictable, and forms a positive feedback loop that leads to further biolog-
ical evolution. The evolution of feathers in dinosaurs and their ultimate use in
flight resulted in the emergence of a completely new set of ecological niches, and
an associated proliferation of species of birds. The emergence of flight in birds,
in turn, has allowed for the long range transportation of seeds and organisms to
islands and inland water bodies (e.g., [25]), opening even new ecological niches,
providing the basis for new functionality of existing biological structure, and
for continued evolutionarily development of biological attributes. Seabirds are,
for example, responsible for substantial nutrient flows from oceans to terrestrial
ecosystems, and their presence or absence can determine whether a landscape
is in one of two alternative stable states–a grassland or closed shrubland [9].

Individual variation. Biological systems are distinguished from purely phys-
ical systems by individual variation of agents. Individual organisms often differ
from other individuals of the same species [7]. Much of this variation is derived
from underlying genetic differences and these genetic differences provide the
basis for differences in biological attributes, e.g., behaviors, functions, and en-
vironmental responses and the raw material for biological evolution. Individual
variation within species has been postulated to be a key mechanism driving pat-
terns of and maintaining species diversity in ecological communities [4]. Species
phenology, for example, describes the seasonal timing of demographic processes
such as flowering in trees (e.g., [27]). Individual variation in response to envi-
ronmental cues (e.g., day length, temperature) means that some trees will bud
out and flower earlier in the spring than others. An earlier phenology could
increase the likelihood of seeds colonizing and capturing new available (empty)
sites in a forest or, alternatively, increase the risk of being adversely impacted
by a late spring frost. The consequences of individual variation, thus, depend on
the environmental and ecological context. Individual variability means that the
rules for updating a system can vary from individual to individual even if the
environmental context is identical. In a cellular automaton, this is analogous
to cell to cell variation in the updating rule for a specific cell type, for instance,
among different white cells even with identical neighborhoods.

Synthesis. Biological evolution creates attributes of organisms and the bio-
logical system creates the context that determines the functionality and utility
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of these attributes. Biological evolution led to photosynthesis, and photosyn-
thesis then resulted in abundant free oxygen in the atmosphere (e.g., [30] [21].
Biological attributes that enabled aerobic respiration in the presence of free
oxygen were advantageous in this new context. Free oxygen and aerobic respi-
ration, subsequently allowed for a wide array of niches that did not exist before
and these niches could be occupied by species with new or pre-adapted func-
tional attributes (e.g., [28]). Biological systems create and modify their own
adjacent possible through construction of or extension of biological function or
niche space that is immediately adjacent to current niche space. The creation
of new biological opportunities allows for the emergence of new organisms, new
functionalities, and a new adjacent possible. This process is enormously creative
and unpredictable a priori. Biological systems are thus second order computa-
tionally irreducible, because the rules for updating and the potential states of
the system change as the system evolves. The evolution of the biosphere is
non-algorithmic. We claim that no algorithm can pre-state all possible biolog-
ical attributes, their potential functions, or how these functions might be of
selective advantage in potential future environments. The unpredictability of
biological systems is thus radically unlike the computational incompressibility
of physical systems, the Halting problem on a universal Turing machine or, a
fortiori, unlike the irreducibility of cellular automata.

5 Human Social Systems

Human social systems are a specialized case of a biological system with an ad-
ditional source of computational irreducibility: sentience. We use ‘sentience’ to
refer to the state of being conscious, self-aware, and having free will. Humans
are sentient beings that are able to perceive their own possibilities within the
context of their environment. A person might, for instance, conceive of a net-
work of linked computers that would later become the internet and allow for the
world wide web. The creation of the internet and world wide web then provides
the basis for other innovations that are dependent on the existence of the inter-
net, e.g. social networking websites, cloud computing, etc. The creation of the
internet allowed for the possibility of these subsequent innovations–the internet
resulted in a new and expanded adjacent possible. All of these innovations–the
internet, social networking websites, and cloud computing–require a person(s)
that imagined or perceived the possibility of these innovations in a given context.
Similar sequences of creative expansion of the adjacent possible can be found in
many contexts outside of technology–from music and visual art to the develop-
ment of law and systems of governance. Sentience thus acts to create what is
possible adjacent to what currently exists in a manner analogous to biological
evolution, and this process proceeds in a positive, self-reinforcing feedback loop:
Innovation creates the opportunity for more innovation.

Sentience and the perception of possibility distinguish the computational ir-
reducibility of human social systems from physical and other biological systems.
The processes that contribute to the computational irreducibility of physical
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and biological systems also apply to human social systems, i.e., interactions
among many system components, biological evolution, and individual variation,
functional contingency. Sentience operates in addition to these processes and
sets the computational irreducibility of human social systems apart from these
other systems. We thus characterize human social systems as having third order
computational irreducibility. Third order computational irreducibility is distin-
guished by the sentient perception of what is possible in a given context, and
drives the evolution of technology, economics, governance, and other compo-
nents of the human social system. We expect that human social systems will
be less predictable than biological or physical systems, meaning that predictive
gains from coarse-graining will result in larger information loss than occurs in
these other systems.

In the context of human social systems, the adjacent possible is related to
the concept of affordances. Affordances are the attributes of an object or en-
vironment that allow an action to be performed [12]. Affordances are action
possibilities that humans perceive as, for example, the many potential uses of
a screw driver (e.g., turning a screw, opening a can, puncturing a tire). Af-
fordances are in many ways analogous to the process of biological evolution
‘discovering’ the function of attributes of organisms in the context of an organ-
ism’s environment. The relationships between humans and their environment
can thus lead to perceived possibilities, actions, and cognition, and is dynamic,
reciprocal, and contextual [23]. While our discussion has focused on individu-
als and consciousness, human social systems operate across hierarchical levels
of structure. Social systems include individuals, small groups of people, more
expansive social organizations and institutions, and networks of organizations
[22]. Each of these levels of social organization contributes to the computa-
tional irreducibility of social systems, but the sentience of individuals–and the
inherit variability among individuals–is the defining process that distinguishes
human social systems from other purely biological systems. The computational
irreducibility that stems from sentience is compounded by the interactions be-
tween and among the other components of social systems. The agency of an
individual person can affect higher, levels of social organization (e.g., through
leadership and contagion of beliefs), but social groups and organizations also
impact the actions and identities of individuals. These feedbacks and linkages
between individuals and groups have likely been made stronger and more fluid
with the advent of social media, and are central to understanding and predicting
trajectories of human social systems. Lastly, the role of culture in accumulating
and transferring information among individuals is a central feature of human
social systems that is akin to information storage in the genetic code in biolog-
ical systems. Challenges. Designing algorithms for essentially non-algorithmic
problems has been problematic since the onslaught of Turing-complete machines
(e.g., [8]). In human social systems, the problem of framing affordances has not
yet been programmed. Whether it is programmable or not is a question that
is central to the field of computational complexity, artificial intelligence and
robotics. Agent based models (ABMs) have opened up new vistas of scientific
discovery to simulate decision-making by heterogeneous agents in artificial soci-
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eties (e.g. [13]), but there are significant limits to the algorithmic approach for
simulating both creative decision making by intelligent agents in rapidly shift-
ing environments and social dynamics, a problem that was even acknowledged
by Turing [10]. Fundamental assumptions that are engrained in each algorithm
about the behavioral rules, creative decision-making, learning, treatment of un-
certainty and so forth, constrain the modeling of emergence, self-organization
and adaptation in complex social systems. Different types of algorithms and
Turing-complete machines such as agent based models, genetic algorithms and
artificial neural networks, have opened up new vistas for modeling creative deci-
sion making in finite, discrete, computational steps (e.g., [17] [16] [14]). Human
social systems with heterogeneous agents with the capability for creative deci-
sion making in rapidly shifting social environments may significantly limit the
potential for algorithms to model and predict the trajectory of these systems.
Our understanding of emergence, self-organization and adaptation in complex
systems populated by sentient agents that undertake creative decision-making
is limited by algorithms.

6 Conclusions

The limits to predictive capacity imposed by computational irreducibility is
increasingly important as we confront complex and interlinked problems that
incorporate natural and human social systems. Predicting the trajectory of
earth’s climate system, for example, is an important but difficult problem be-
cause it incorporates human social, biological, and physical systems. Compu-
tational irreducible is an inevitable feature of complex systems, but we argue
that not all forms of computational irreducibility are equivalent. The under-
lying processes that lead to computational irreducibility and the potential for
gains in predictive capacity vary across physical, biological, and social systems.
Physical systems have the simplest kind of computational irreducibility, which
we define as first order computational irreducibility, in which neither the set
of potential states nor the rules for updating the states change as the system
evolves. The potential for system prediction is likely to be the greatest with
first order computational irreducibility but with the loss of information. Bio-
logical systems have a more intransigent computational irreducibility because
the potential system states and updating rules change as the system evolves.
Functional contingency, biological evolution, and individual variation are three
underlying processes that lead to this second order computational irreducibility
of biological systems. Humans perceive and create their own adjacent possible
and this sentience leads to human social systems being characterized by third
order computational irreducibility. The increasingly difficult forms of compu-
tational irreducibility across physical, biological, and human social systems,
and the low predictive capacity found in these living systems is offset by their
remarkably rich, diverse, and creative dynamics. Although we argue that ulti-
mately, the evolution of the biosphere is non-algorithmic, there is much to be
learned in the pursuit of the frontier of first, second and third order compu-
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tational irreducibility, and this will challenge computational modelers to reach
the outer limits of computational irreducibility.
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