Exercise for workshop 1: Mentoring emerging writers

Introduction

Sequencing
1. What is the main point – the key idea – of this paper? Where is it placed?
2. What is the puzzle/gap/claim of this paper? How is it expressed in the introduction? Where is it?
3. What questions are answered in this introduction? (what work does this section do?)
4. What order are these questions placed in?

Establishing relationships
5. Where is the author positioned? (Why?)
6. How is the reader engaged? How are they addressed (where are they positioned in the writing)?
7. Who is the target reader? What level of knowledge is assumed? (how do you know?)
8. How are other authors used in this section (e.g. to support a claim, to provide a platform, to introduce a debate?)
9. How many references are used?

Style
10. Look at two paragraphs: where is the main idea placed in the paragraph?
11. How long are the sentences? How complex? (Why?)
12. What can we say about the way ideas are laid down in the sentence (where is the subject – active or passive?) (Why?).
13. Circle the verbs – what kinds of verbs are used (why?)
14. What tense is this section in?
15. How does the writer develop tension?
16. Does the author use any rhetorical devices (mystery, suspense, metaphor)?

Method

Sequencing
1. Is the main idea referred to in this section? How and where?
2. What questions are answered here? (what work does this section do?)
3. What order are the questions placed in?

Establishing Relationships
4. Where is the author positioned? (Why?)
5. How is the reader engaged? How are they addressed (where are they positioned in the writing)?
6. Who is the target reader? What level of knowledge is assumed? (how do you know?)
7. How are other authors used in this section (e.g. to support a claim, to provide a platform, to introduce a debate?)
8. How many references are used?
9. It is said that a method section should provide enough detail for another specialist to replicate the study. Has the author done this? Do you think the description here accurately represents what happened?

Style

10. Look at two paragraphs: where is the main idea placed in the paragraph?
11. How long are the sentences? How complex? (Why?)
12. What can we say about the way ideas are laid down in the sentence (where is the subject – active or passive?). (Why?)
13. Circle the verbs – what kinds of verbs are used (why?)
14. What tense is this section in?
15. Does the author use any rhetorical devices (mystery, suspense, metaphor)?
16. How do figures/graphs relate to the text?

Discussion

Central claim

1. What is the central claim – the key idea – of this paper? (summarise in one sentence)
2. Where is this claim made?
3. Is it hedged? Why and how?

Sequencing

4. Is the main idea referred to in this section? How and where?
5. What questions are answered here? (what work does this section do?)
6. What order are the questions placed in?

Establishing Relationships

7. Where is the author positioned? (Why?)
8. How is the reader engaged? How are they addressed (where are they positioned in the writing)?
9. Who is the target reader? What level of knowledge is assumed? (how do you know?)
10. How are other authors used in this section (e.g. to support a claim, to provide a platform, to introduce a debate?)
11. How many references are used?

Style

12. Look at two paragraphs: where is the main idea placed in the paragraph?
13. How long are the sentences? How complex? (Why?)
14. What can we say about the way ideas are laid down in the sentence (where is the subject – active or passive?), (Why?)
15. Circle the verbs – what kinds of verbs are used (why?)
16. What tense is this section in?
17. Does the author use any rhetorical devices (mystery, suspense, metaphor)?
18. Would you consider this section to be persuasive? If so, how?
Abstract 1
Hybridization facilitated by human activities has dramatically altered the evolutionary trajectories of threatened taxa around the globe. Whereas introduced mammalian predators and widespread habitat loss and degradation clearly imperil the recovery and survival of the New Zealand endemic black stilt or kaki (Himantopus novaezelandiae), the risk associated with hybridization between this critically endangered endemic and its self-introduced congener, the pied stilt or poaka (Himantopus himantopus leucocephalus) is less clear. Here, Bayesian admixture analyses of microsatellite data with mitochondrial DNA sequence data are combined to assess the levels of hybridization and introgression between kakī and poaka. This study shows that birds classified as hybrids on the basis of adult plumage are indeed of hybrid origin and that hybridization between kaki and poaka is both extensive and bidirectional. Despite this, almost no evidence was found for introgression from poaka to kaki, thus negating the popular belief that kaki represent a hybrid swarm. This study represents the first comprehensive study to document a lack of widespread introgression for a species at risk despite a recent history of extensive bidirectional human-induced hybridization. This rather surprising result can be attributed, in part, to reduced reproductive success in female hybrids combined with a transient male-biased kaki sex ratio. To maximize the evolutionary potential of kaki, these data are used to recommend conservation management activities aimed to maintain the genetic integrity and to maximize the genetic diversity of this iconic rare bird.

Abstract 2
Hybridization facilitated by human activities has dramatically altered the evolutionary trajectories of threatened taxa around the globe. Whereas introduced mammalian predators and widespread habitat loss and degradation clearly imperil the recovery and survival of the New Zealand endemic black stilt or kaki (Himantopus novaezelandiae), the risk associated with hybridization between this critically endangered endemic and its self-introduced congener, the pied stilt or poaka (Himantopus himantopus leucocephalus) is less clear. Here, we combine Bayesian admixture analyses of microsatellite data with mitochondrial DNA sequence data to assess the levels of hybridization and introgression between kaki and poaka. We show that birds classified as hybrids on the basis of adult plumage are indeed of hybrid origin and that hybridization between kaki and poaka is both extensive and bidirectional. Despite this, we found almost no evidence for introgression from poaka to kaki, thus negating the popular belief that kaki represent a hybrid swarm. To our knowledge, ours represents the first comprehensive study to document a lack of widespread introgression for a species at risk despite a recent history of extensive bidirectional human-induced hybridization. We attribute this rather surprising result, in part, to reduced reproductive success in female hybrids combined with a transient male-biased kaki sex ratio. To maximize the evolutionary potential of kaki, we use these data to recommend conservation management activities aimed to maintain the genetic integrity and to maximize the genetic diversity of this iconic rare bird.
Abstract 3
The preservation of indigenous wildlife is important to us all as national and global citizens. Hybridization facilitated by human activities has dramatically altered the evolutionary trajectories of birds, animals, and plants around the globe. Some species and fauna are affected more than others. Whereas we can see clearly that the introduced mammalian predators and widespread habitat loss and degradation has imperilled the recovery and survival of the endemic black stilt or kākā (Himantopus novaezelandiae), we are less clear about the risk associated with hybridization between this critically endangered endemic and its self-introduced congener, the pied stilt or poaka (Himantopus himantopus leucocephalus). In this ground-breaking study, we have combined Bayesian admixture analyses of microsatellite data with mitochondrial DNA sequence data to assess the levels of hybridization and introgression between kākā and poaka. We can show that birds classified as hybrids on the basis of adult plumage are indeed of hybrid origin and that hybridization between kākā and poaka is both extensive and works in both directions. Despite this, we found almost no evidence for introgression from poaka to kākā, thus negating the popular belief that kākā represent a hybrid swarm. To our knowledge, ours represents the first comprehensive study to document a lack of widespread introgression for a species at risk despite a recent history of extensive bidirectional human-induced hybridization. We attribute this rather surprising result, in part, to reduced reproductive success in female hybrids combined with a transient male-biased kākā sex ratio. As ecologists and global citizens, we need to maximize the evolutionary potential of kākā; we therefore make recommendations to conservation management activities aimed to maintain the genetic integrity and to maximize the genetic diversity of this iconic rare bird.