Soil Health on Organic Vegetable Farms

Vern Grubinger February 14, 2015

You Know This

Chemical

Soil Health

Biological Physical

What are some soil health goals and 'best practices'?

What range of approaches are farmers are using to implement those practices?

Goals

Practices

Manage soil nutrients, pH

Maintain passive OM

Supply active OM

Maintain soil structure

Avoid compaction, erosion

Soil testing

Add soil amendments

Cover crop

Reduce tillage

Rotate crops

pH

Plant nutrients: reserve or soluble Soluble salts (electrical conductivity) Nitrogen: NH-4, NO-3, mineralizable **Organic matter: active or passive Biological activity**

Compaction: surface or subsurface

Colorimetric test for pH regular or wide range

~\$20 including shipping http://cnal.cals.cornell.edu/forms/phkit.html

Field soil test – **'reserve' nutrients** Labs use different extracts: Morgan, Bray, Mehlich, etc.

		NITROGEN (N)	PHOSPHATE (P2O5)	POTASH (K20)
LIME & NUTRIENTS NEEDED:	3.0	0 24	0 13	0 44
BALANCE NEEDED FROM FERTILIZER:	3.0	0	0	0

Rate of lime recommended is to raise soil pH to 6.5 Broadcast lime before or during seedbed preparation and harrow in. High magnesium lime may be the most economical source for your magnesium

N contribution from manure was adjusted for past manure application at

Saturated media or potting soil test: measures water-soluble nutrients

(similar tests are 1:2 dilution, leachate pour-through)

ANALYSIS OF SATURATION EXTRACT

pH: 6.9	(cm) • 2 27	Micronutrients	mg/L
Macronutrients	mg/L	Zinc (Zn): Boron (B):	0.04
Nitrate-N (NO3-N): Ammonium-N (NH4-N)	162 3	Copper (Cu): Iron (Fe):	0.10
Phosphorus (P): Potassium (K):	8 112	Sodium (Na):	83.19
Calcium (Ca): Magnesium (Mg):	211 116		
Sulfur (S):	96	M2	

useful for managing tunnels and GH soils (especially in combination with field soil test) \$15-30 depending on lab

University of Maine long term high tunnel soil test \$22

	Aggregate Stability (%)	19.4	2	aeration, infiltration, rooting
_	Available Water Capacity (m/m)	0.20	7	
HYSICA	Bulk Density (g/cc)	1.45	1	rooting, water transmission
Ē	Surface Hardness (psi)	222	1	rooting, water transmission
	Subsurface Hardness (psi)	292	2	Subsurface Pan/Deep Compaction
	Organic Matter (%)	3.3	1	energy storage, C sequestration, water retention
GICAL	Active Carbon (ppm)	555	3	
BIOLO	Potentially Mineralizable Nitrogen (µgN/ gdwsoil/week)	4.0	2	N supply capacity, N leaching potential
	Root Health Rating (1-9)	5	5	
	pH (see attached CNAL Report)	7.2	10	
MICAL	Extractable Phosphorus (see attached CNAL Report)	11	10	
GHEI	Extractable Potassium (see attached CNAL Report)	63	10	
	Micronutrients (see attached CNAL Report)	ADEOUATE	10	

Cornell Soil Health Test \$85

http://soilhealth.cals. cornell.edu/extension/ test.htm

- Particle size distribution and texture
- Wet aggregate stability
- Available water capacity
- Surface hardness (you do on farm)
- Subsurface hardness (you do on farm)
- Organic matter
- Active carbon
- Soil respiration new in 2014
- Soil protein new in 2014
- Root pathogen pressure
- Standard fertility test

How much of what kind of fertilizers to apply?

Nitrogen (N) Phosphate (P_2O_5) Potash (K_2O_2))
---	---

1.Recommendations:		

Nutrient credits:

Manure		
Compost		
prior cover crop		
soil organic matter		
2. Total credits:		

Total needed $(1-2) =$		

common organic fertilizers

- N: dried blood, Chilean nitrate, some seed meals: canola, peanut, soy
- P: rock phosphatebone char, bone meal
- K: potassium sulfate, sul-po-mag, greensand, wood ash
- Ca: lime, gypsum Mg: lime, sul-po-mag, epsom salts

vegetable nutrient recommendations vary a lot by state make your best estimate...

CABBAGE, BROCCOLI, Nitrogen (N)* Phosphorus (P) Lbs P₂O₅ per acre Potassium (K) Lbs K₂O₅ per acre CAULIFLOWER AND OTHER Lbs per acre BRASSICA CROPS

Soil Test Results		Very Low	Low	Optimum	Above Optimum	Very Low	Low	Optimum	Above Optimum
Broadcast and Incorporate	100	150	100	50	0	175	125	50	0
Sidedress 4 weeks after transplant	60**	0	0	0	0	0	0	0	0
TOTAL RECOMMENDED	160	150	100	50	0	175	125	50	0

New England Extension

		Soi	l Phosp	horus L	evel	So	Soil Potassium I		Soil Potassium Level		vel	
	Pounds N	Low	Med	High (Opt.)	Very High	Low	Med	High (Opt.)	Very High	_		
	per Acre	Po	unds P ₂	O5 per A	cre	Po	unds K ₂	2O per A	cre	Nutrient Timing and Method		
Broccoli	150-200	200	100	50	0^{1}	200	100	50	0 ¹	Total nutrient recommended.		
	50-100	200	100	50	0^{1}	200	100	50	0^{1}	Broadcast and disk-in.		
	50	0	0	0	0	0	0	0	0	Sidedress 2-3 weeks after planting.		
	50	0	0	0	0	0	0	0	0	Sidedress 4-6 weeks after planting.		
Brussels Sprouts,	100-150	200	100	50	0^{1}	200	100	50	01	Total nutrient recommended.		
Cabbage,	50-75	200	100	50	0^{1}	200	100	50	01	Broadcast and disk-in.		
Cauliflower	25-50	0	0	0	0	0	0	0	0	Sidedress 2-3 weeks after planting.		
Kale, Collards	100-200	200	100	50	0 ¹	200	100	50	01	Total nutrient recommended.		
	50-100	200	100	50	0^{1}	200	100	50	0^{1}	Broadcast and disk-in.		
	25-50	0	0	0	0	0	0	0	0	Sidedress after each cutting or stripping.		
Kohlrabi	25-50	0	0	0	0	0	0	0	0	Total nutrient recommended.		
	25-50	0	0	0	0	0	0	0	0	Sidedress if needed according to weather.		

Rutgers Extension

Maintaining OM and adding N without P ...a challenge for many farms

over half Vermont vegetable fields tested high or very high in P

On soils with 'excessive' P

1) Apply little or no compost, manure or 'blended fertilizers'

2) Use legumes as primary source of N, plus grasses to maintain soil OM

3) Use bagged fertilizer for N, K as needed

PRO-GRO 5-3-4 A NATURAL/ORGANIC FERTILIZER

	BONEMEAL ROCK PHOSPHATE COLLOIDAL PHOSPHATE CYSTER MEAL KELP MEAL	GREENSAND LANGBEINITE VEGETABLE PROTEIN MEALS MEAT AND EONE MEAL	NATUPAL NITRATE OF SODA LEATHER NEAL FISH MEAL BENEFICIAL BACTERIA HUMATES TFACE MINERAL &
--	---	---	---

N-P-K fertilizers

DEHYDRATED ALFALFA

NET WEIGHT 50 LBS. (22.68KG)

some organic options with relatively high N, low in P cost per pound of N varies greatly!

Approximate N-P-K

canola meal 5-1-1 Chilean nitrate 16-0-0 blood meal 12-0-0 feather meal 13-0-0 peanut meal 8-1-2 soybean meal 7-2-1

C:N Ratio affects PAN

Seed meals released N steadily during incubation studies

Cost per lb of nutrient (50 lb bags 2014 NOFA bulk order)

5-5-5 Custom @ \$22 = N, P, and K \$8.80/lb each 4-3-3 CheepCheep @ \$18.50 = N, P, K \$9.25/lb each 6-0-6 Custom @\$27 = N, K \$9/lb each 2.5-.5-2.2 Alfalfa Meal @ \$28.50 = \$22/lb N, \$26/lb K 12-0-0 Blood Meal @t \$77 = \$13/lb N 8-1-0 Peanut Meal @\$31.50 = \$7.88/lb N 10-0-0 Pro-Booster @\$31.50 = \$6.30/lb N 7-1-2 Conventional Soymeal @ \$17 = \$4.86/lb N 0-0-51 Sulfate of Potash @ \$51 = \$2/lb K 0-0-22-11 Sul-Po-Mag @ \$37 = \$3.27/lb K

cover crops

Cover crop 'systems'

Winter and/or Spring Covers (Cool)

Summer 'Smother' Crops (Warm)

Year-Long Cover Crop (Fallow)

Interseeding / Undersowing (Strips)

winter rye is reliable, can be hard to kill

winter-killed oats Chapelle's Potatoes

Frost-seeded red clover Wood's Market Garden

Canada field pea

Mowed Sudax cover crop – fallow year Gildrien Farm

Buckwheat summer smother My former Extension office field

Sow thickly, grow for 30-40 days, mow at flowering

Soybeans on 9/15, sown 5/15

Cowpeas on 9/15, sown 5/15

Sesbania on 9/15, sown 5/15

Crotolaria on 9/15, sown 5/15

Mixed species: Sudax plus red clover

Sile Mar

11 m

Fall-sown hairy vetch and rye Lewis Creek Farm

Spring-sown oats, peas turnips Eveningsong Farm

Strips: white clover between wide-spaced crops Edgewater Farm

City .

Ryegrass between plasticulture vegetables Riverberry Farm

- Push drop spreader rides edge of plastic
- Seed annual ryegrass at 30 lb/A
- At \$30 for 50 lb, cost is \$18/A of plastic
- Key is sow early cool, before weeds
- Use 1.2 mil or thicker plastic, for removal

Mow with self-propelled Echo/Bearcat string trimmer

11111111

Strawberry Plasticulture Darby Farm

Dwarf ryegrass, 100 lb/A ~\$1/lb

2/2010

- Sow early after laying plastic
- Till or lightly rake in
- Mow or string trim
- Apply straw in second year

mowing maturing rye to cover plastic mulch

Elderberry Pond Farm

compost and manure 'soil amendments'

manure issues: food safety, P content, weed seeds

compost issues: cost, N availability, P content, herbicide?

make it or buy it – actual costs?

HOLLAND

Available vocal ingredients? lake weeds, Foggy Bottom Farm

Compaction and tillage

sub-surface compaction is a common problem usually at just under a foot deep

deep zone tiller

HV.

MA

organic weed management within and between the rows is challenging in this system

Yeoman's plow

Sectors.

reduced till organic pumpkins Hudak Farm

permanent wheel tracks between rotovated strips Blue Heron Farm, Lodi NY

crop rotation

crop rotation guidance

Think cover crop/ vegetable alternation

Devote as much land to covers as possible.

Get a winter cover on everything

Create management units thoughtfully

Keep good records

Three rotation approaches...

... from real organic farms

2 out 3 year rotation

- Year 1: vegetables; rye + vetch in fall.
- Year 2: plow rye + vetch early summer; bare summer fallow to control weeds; oats + vetch in late summer.
- Year 3: plow oats + vetch in late spring; vegetables, oats + vetch in fall

Alternating years: warm/cool

- Year 1: plow winter rye in late spring, summer bare fallow*, oats + field peas in fall
- Year 2: disk oats + peas in early spring, cool-season vegetable crops; winter rye
- Year 3: plow winter rye in early summer, bare fallow*, rye + vetch in late summer
- Year 4: plow rye + vetch in late spring, warm-season vegetables; winter rye

*or buckwheat, etc.

2 years crops / 2 years covers

	perennial weeds present	perennial weeds absent
Year 1:	<u>Vegetables</u> , fall oats that winter-kill	<u>Vegetables</u> , fall oats that winter-kill
Year 2:	buckwheat in early summer; rye and hairy vetch in fall	red clover and oats in spring, mow oats at head formation
Year 3:	plow rye/vetch in late spring; summer bare fallow; oats and field peas in fall	mow red clover 3 times
Year 4:	disk winter-killed oats/peas; <u>Vegetables</u>	plow clover in early spring; <u>Vegetables</u>

Roxbury Farm – 3 groups veggies, every other year

year 1	Oats, peas, bell beans	March 15-June 15
	Fall vegetables	July 1-Fall
	Fall vegetables	Fall-Winter
year 2	spring fallow	March 1- May 15
	sorghum sudan grass, crotalaria	May 15- Aug 15
	late summer fallow followed with oats	Sept 15- winter
year 3	Spring fallow	April 15 –June 1
	Summer vegetable crop	June1- Sept 15
	rye and hairy vetch	Oct 1 - Winter
year 4	rye and hairy vetch for straw	Winter- June 15
	summer bare fallow	June 21- July 15
	Buckwheat	July 15- Aug 30 -
	Oats and peas	Sept 15-Winter
year 5	spring fallow	March 15- April 30
	Spring and summer vegetables	April 30- Sept 30
	Oats	Sept 15- winter

Willow Pond Farm – small plots, diversified crops

Back Field - 2007

Brassicas		Cucurbits	1	Cucurbits
			2	
Roots		Greens	3	
			4	
Brassicas			5	
Roots		6		
	Greens		7	
Brassicas		8		
			9	
			10	
			11	
Greens	Roots		12	
			13	
Solanums	Flowers		14	
			15	

Back Field - 2008

Greens		1	Early Greens	Fall Brassicas	
		2			
		3			
		4			
Roots		5	Early Roots		do J
		6			/er C
		7			Š
		8			Fall
Alliums	Fall Cover Crop	9	198 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	March March	mar V
		10			
		11			
		12			
		13			12000
Solanums Alliums		14			
		15			

Solanums
Cucurbits
Alliums
Brassicas
Roots
Greens
Legumes
Perennials

Expert farmer advice: From Planning Guide to Organic Crop Rotations

- Do not have a 'rigid' rotation plan.
- Use knowledge of fields and crops, and rules of thumb that are site specific.
- Have contingency plans, often focused on what NOT to do.
- Have a clear sense of priorities.

thank you

www.uvm.edu/vtvegandberry

The particular in the second