# Managing High Tunnel Soil Fertility

February 16, 2019

Vern Grubinger www.uvm.edu/vtvegandberry



#### Very different tunnel production systems



## Nutrients affect quality not just yield



#### **Rooting volume matters: small=less buffered**



## Excess nutrients can lead to high salts in a potting mix

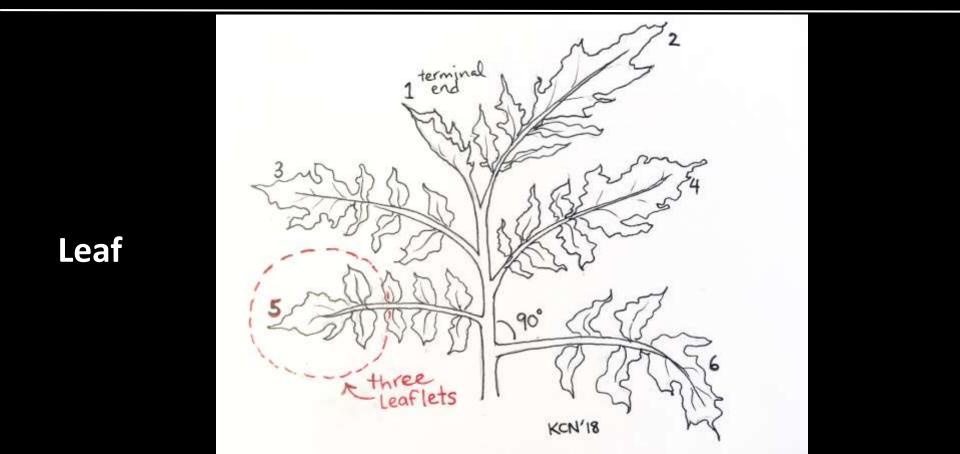


Salts can build up in a tunnel, especially near the surface

## Available N may run out when "growing on" in a mix



organic growing medium is a 'black box' looks good, feels good...what's in it?




# **Monitoring Nutrient Levels**

Soil



Modified Morgan Saturated Media



**Saturated media extract (SME)** adds <u>water</u> to soil then measures soluble nutrients, immediately available to plants. Also measures soluble salts and nitrogen levels (not in field soil tests.)

**Field soil tests** use different <u>acid solutions</u> (modified Morgan's Mehlich, Brays) to extract reserve nutrients prior to measuring.





'Reading the plants' is a good idea, but it's not precise, and by the time you see a symptom it's harder to recover

# **Different tests require different samples**

<u>Field soil test</u>: use modified Morgan's only! Submit 1 cup soil – stick to same time each year.

<u>SME test</u>: Submit 1 pint of soil that's been warm and moist for 1-2 weeks, a month or so before you'll be ready to plant.

<u>Compost test</u>: Submit 1 quart, warm and moist for 1-2 weeks.

Leaf analysis: take samples from correct place on ~20 plants.

Tools of the trade for field and tunnel sampling: soil probe and a clean plastic bucket

# All types of tests have 4 parts to the process

# 1) Sampling

2) Analysis

3) Interpretation of results

4) Recommendations

#### Any type of test requires a good sample for accurate results

- Test a uniform area of soil, potting mix, plants... avoid abnormal areas
- Sample correct soil depth, plant part, etc.
- Take 10 sub-samples, 20 is better, mix well
- Use a zig zag, haphazard pattern to sample
- Do not contaminate the sample
- Label sample clearly with location and date

# **Some Testing Options**

## UMaine:

SME: \$18 + \$8 for OM Long term tunnel test: \$25 (SME plus modified Morgan's field test) Compost: \$55

UMass: SME: \$30 + \$6 for OM

Penn State: SME: \$40 w/o OM Compost: \$55 - \$75 (with micros) Organic potting mix (credited to Eliot Coleman in Kuepper, 2004).

- 1 part sphagnum peat
- 1 part peat humus (short fiber)
- 1 part compost
- 1 part sharp sand (builder's)
- to every 80 quarts of this add:
- 1 cup greensand
- 1 cup colloidal phosphate
- 1<sup>1</sup>/<sub>2</sub>–2 cups crabmeal or blood meal

1/2 cup lime

Use the SME test

#### Table 1. General information guidelines for greenhouse growth media analyzed by the Saturated Media Extract (SME) method.

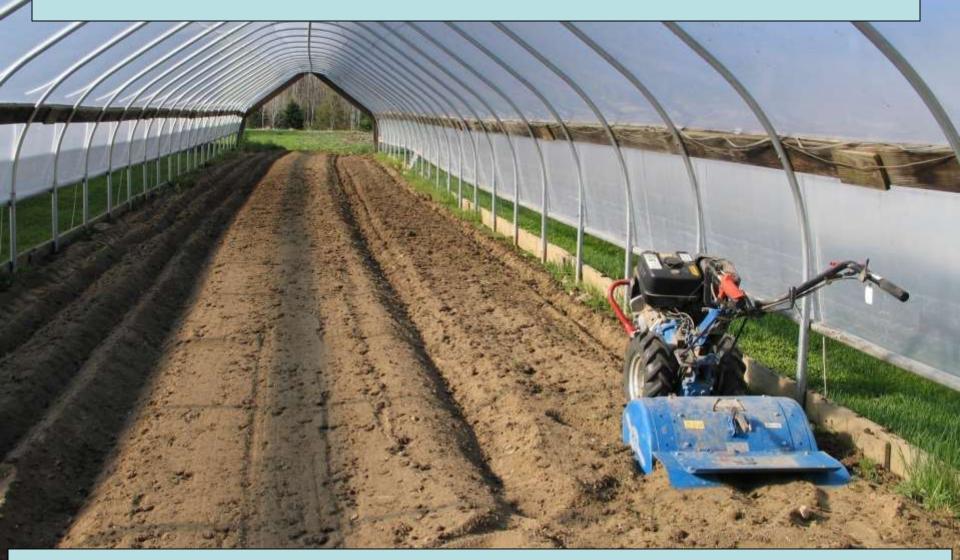
| Analysis               | CATEGORY |                  |         |         |              |  |  |  |
|------------------------|----------|------------------|---------|---------|--------------|--|--|--|
|                        | Low      | Acceptable Optin |         | High    | Very<br>High |  |  |  |
| Soluble<br>Salt, mS/cm | 075      | .75-2.0          | 2.0-3.5 | 3.5-5.0 | 5.0+         |  |  |  |
| Nitrate-N,<br>ppm      | 0-39     | 40-99            | 100-199 | 200-299 | 300 +        |  |  |  |
| Phosphorus,<br>ppm     | 0-2      | 3-5              | 6-9     | 11-18   | 19 +         |  |  |  |
| Potassium,<br>ppm      | 0-59     | 60-149           | 150-249 | 250-349 | 350 +        |  |  |  |
| Calcium,<br>ppm        | 0-79     | 80-199           | 200 +   | -       |              |  |  |  |
| Magnesium,<br>ppm      | 0-29     | 30-69            | 70 +    | -       | -            |  |  |  |

#### Depends what you're growing: herbs? tomatoes?

Sample Name: Potting Soil

Crop Grown: Transplants

Comments:


#### Analytical Results

| Determination                     | Optimum Level               | Level Found         |
|-----------------------------------|-----------------------------|---------------------|
| рH                                | 5.8 - 6.4                   | 6.9                 |
| Soluble Salts                     | 0.75 - 3.50 mmhos/cm        | 4.38 mmhos/cm       |
| Nitrate-N                         | 40 - 200 ppm                | 11.7 ppm            |
| (as % soluble salts)              | (8 - 10 %)                  | ( 0.4 %)            |
| Ammonium-N                        | 2 - 20 ppm                  | 167 ppm             |
| Calcium                           | 60 - 400 ppm                | 193 ppm             |
| (as % soluble salts)              | (14 - 16 %)                 | ( 6.9 %)            |
| Potassium<br>(as % soluble salts) | 40 - 300 ppm<br>(11 - 13 %) | 366 ppm<br>(13.1 %) |
| Magnesium                         | 30 - 200 ppm                | 48 ppm              |
| (as % soluble salts)              | (4 - 6 %)                   | (1.7 %)             |
| Phosphorus                        | 5 - 30 ppm                  | 7.2 ppm             |

#### Saturated Media Extraction Method

| Lab ID:<br>Sample ID: | J1724-1<br>Fort Lite Mix | J1724-2<br><u>Fafard</u> #2 | J1724-3<br>Our Mix |
|-----------------------|--------------------------|-----------------------------|--------------------|
| pH:                   | 6.08                     | 6.09                        | 7.65               |
| Conductivity ms/cm:   | 4.79                     | 0.992                       | 1.69               |
| NO3 ppm:              | 276                      | 0.493                       | 0.202              |
| NH4 ppm:              | 1.27                     | 0.783                       | 94.8               |
| Phosphorus mg/L       | 20.5                     | 13.1                        | 6.15               |
| Potassium mg/L        | 858.0                    | 93.0                        | 151.0              |
| Calcium mg/L          | 218.0                    | 49.5                        | 38.6               |
| Magnesium mg/L        | 122.0                    | 58.0                        | 37.2               |
| Sodium mg/L           | 200.0                    | 36.3                        | 63.3               |

#### In-ground growing is highly buffered, due to soil volume



usually the soil is amended with a lot of compost, nutrients

#### If soil on site is poor quality or compacted, make raised beds



#### If adding a lot of compost to potting mix or tunnel soil, it's a good idea to do a compost test first

#### **Compost test results – UMaine lab**

| STANDARD ANALYSIS |                  |           |             |                 |  |  |  |  |  |  |
|-------------------|------------------|-----------|-------------|-----------------|--|--|--|--|--|--|
|                   | Parameter        | Dry Basis | As is Basis | Lbs/Ton (as is) |  |  |  |  |  |  |
|                   | Total Solids (%) |           | 41.7        |                 |  |  |  |  |  |  |

C:N of 17, low NH4, neutral pH = mature (stable) 1 cu. yd. = 1/2 ton contains about 5-3-2 20 yards would add 100-40-20 of N-P-K Ib of N is immediately available as nitrate-N

| 6.7   | Zinc (ppm)    | 114       | 47.8        | 0.10            |
|-------|---------------|-----------|-------------|-----------------|
| IUTAN | RITY ANALYSIS |           |             |                 |
| 214   | Parameter     | Dry Basis | As is Basis | Lbs/Ton (as is) |
|       | C:N Ratio     |           | 16.9        |                 |
|       | NH4-N (ppm)   | 0.85      | 0.355       | < 0.01          |
|       | NO3-N (ppm)   | 364       | 152         | 0.30            |



Tomatoes: plan ahead for heavy nutrient demand, yields can be <u>much</u> greater than in the field

## What about leafy greens, winter growing?

#### A lot less nutrients are needed, but data is lacking.

'Field' soil test alone for established tunnel soil is not so helpful: nutrients are usually 'off the chart' but that is for field yields. Also does not include soluble salts, nitrate-N, ammonium-N



# Best option is SME + field soil test

| Results                      |       |             |                             | VT Co                                 | ounty: | Chittenden        |  |  |  |
|------------------------------|-------|-------------|-----------------------------|---------------------------------------|--------|-------------------|--|--|--|
| Nutrient                     | Lo    | W           | Medium                      | Optimum                               | ŀ      | High or Excessive |  |  |  |
| Phosphorus (P):              |       |             |                             |                                       |        |                   |  |  |  |
| Potassium (K):               |       |             |                             |                                       |        |                   |  |  |  |
| Magnesium (Mg):              |       |             |                             |                                       |        |                   |  |  |  |
| Phosphorus is excessive!!!   |       |             |                             |                                       |        |                   |  |  |  |
|                              | Value | Optimum 1   |                             |                                       | Value  | Optimum Range     |  |  |  |
| Analysis                     | Found | (or Average | ge *) Analysi               | is Fo                                 | ound   | (or Average *)    |  |  |  |
| Soil pH (2:1, water)         | 7.2   |             | Boron (B)                   |                                       | 2.6    | 0.3*              |  |  |  |
| Modified Morgan extractable, | ppm   |             | Copper (C                   | u)                                    | 0.1    | 0.3*              |  |  |  |
| Macronutrients               |       |             | Zinc (Zn)                   |                                       | 3.6    | 2.0*              |  |  |  |
| Phosphorus (P)               | 310.1 | 4-10        | Sodium (Na)                 |                                       | 121.0  |                   |  |  |  |
| Potassium (K)                | 749   | 100-160     | Aluminum (Al                | I)                                    | 6      |                   |  |  |  |
| Calcium (Ca)                 | 6060  | **          |                             |                                       |        |                   |  |  |  |
| Magnesium (Mg)               | 781   | 50-120      | Soil Organic I              |                                       | 14.8   | •                 |  |  |  |
| Sulfur (S)                   | 18.0  | 11*         | Effective CEC               | · · · · · · · · · · · · · · · · · · · | 38.7   | ጥ ጥ               |  |  |  |
| Micronutrients               |       |             | Base Saturati<br>Calcium Sa | *                                     | 77.3   | 40-80             |  |  |  |
| Iron (Fe)                    | 5.3   | 7.0*        |                             |                                       |        |                   |  |  |  |
| Manganese (Mn)               | 16.0  | 8.0*        | Potassium                   |                                       | 4.9    |                   |  |  |  |
|                              |       |             | Magnesiur                   | n Saturation                          | 16.6   | 5 10-30           |  |  |  |

# SME optimal ranges for greenhouse tomatoes

- pH
- nitrate-N
- P
- K
- Ca
- Mg
- soluble salts

6 - 7125 – 200 ppm 1-5 ppm150 – 275 ppm > 250 ppm > 60 ppm 2-4 (mmhos)

Adapted from: Greenhouse Tomatoes, Lettuce and Cucumbers. by S. H. Wittwer and S. Honma. 1979 . Michigan State Univ. Press.

#### **SME test results – UMaine lab**

| рH             | 6.0 - 7.0          | 7.4   |          | HIGH    |
|----------------|--------------------|-------|----------|---------|
| Soluble Salts  | 2.0 - 4.0 mmhos/cm | 2.57  | mmhos/cm | OK      |
| Organic Matter | 8 - 12 %           | 8.3   | ર        | OPTIMUM |
| Nitrate-N      | 100 - 200 ppm      | 30.5  | ppm      | LOW     |
| Ammonium-N     | < 10 ppm           | < 0.5 | ppm      | OK      |
| Phosphorus     | 1 - 5 ppm          | 1.4   | ppm      | OPTIMUM |
| Potassium      | 150 - 275 ppm      | 12    | ppm      | LOW     |
| Magnesium      | > 60 ppm           | 151   | ppm      | OPTIMUM |
| Calcium        | > 250 ppm          | 403   | ppm      | OPTIMUM |
| Aluminum       | < 10 ppm           | 0.1   | ppm      | OK      |
| Boron          | 0.05 - 0.50 ppm    | 0.05  | ppm      | OPTIMUM |
| Copper         | 0.01 - 0.5 ppm     | 0.027 | ppm      | OPTIMUM |
| Iron           | 0.3 - 5.0 ppm      | 0.06  | ppm      | LOW     |
| Manganese      | 0.1 - 3.0 ppm      | 0.02  | ppm      | LOW     |
| Sodium         | < 100 ppm          | 74    | ppm      | OK      |

## Same soil sample: Modified Morgan's (field soil) test results – UMaine lab

| Level<br>Found   | 7.4                  | 0.00            | 328                     | 49             | 0 160              | 1665                | 0   1 | 4.2(A)         | 4.4       | 13.1                          | 82.5          | 0.0        |
|------------------|----------------------|-----------------|-------------------------|----------------|--------------------|---------------------|-------|----------------|-----------|-------------------------------|---------------|------------|
|                  | Soil pH              | Lime<br>Index 2 | Phosphorus<br>(1b/A)    | Potas:<br>(1b/ |                    |                     |       | CEC<br>(100 g) | K         | Mg<br>(% Satu                 | Ca<br>ration) | Acidity    |
| Optimum<br>Range | 6.0-7.0              | N/A             | 40-80                   | 400-           | 600                |                     |       | > 5            |           | 10-20                         | 60-80         | < 10       |
| Level<br>Found   | 8.3                  | 230             | 0.17                    | 4.2            | 10.6               | 2.3                 |       | Addi           | tional H  | Results o                     | or Commen     | ts:        |
|                  | Organic<br>Matter(%) | Sulfur<br>(ppm) | Copper<br>(ppm)         | Iron<br>(ppm)  | Manganes<br>(ppm)  | e Zinc<br>(ppm)     |       |                |           |                               | OUND LEVEI    |            |
| Normal<br>Range  | 8-12                 | > 25            | .25606                  | - 10           | 4 - 8              | 1 - 2               |       |                | no he     | alth risk                     | ι.            |            |
| Level<br>Found   | 1.0                  | 107             | 2.57                    |                | 32                 | 3                   |       |                |           |                               |               |            |
| (Extras)         | Boron<br>(ppm)       | Sodium<br>(ppm) | Soluble Sa<br>(mmhos/cm |                | trate-N A<br>(ppm) | Ammonium-N<br>(ppm) | n.11  |                |           | d <b>f</b> an <del>1</del> 1: |               | Then have  |
| Normal<br>Range  | 0.5-1.2              | < 200           | < 4.0                   | 10             | 0-200              | < 10                | rull  | paymen         | t receive | a for thi                     | s sampie.     | Thank you. |

| Determination  | Optimum Range      | Level Measured | Relative Level |
|----------------|--------------------|----------------|----------------|
| рH             | 6.0 - 7.0          | 6.1            | OPTIMUM        |
| Soluble Salts  | 2.0 - 4.0 mmhos/om | 3.05 mmhos/cm  | OK             |
| Organic Matter | 8 - 12 🕏           | 11.0 %         | OPTIMUM        |
| Nitrate-N      | 100 - 200 ppm      | 188 ppm        | OPTIMUM        |
| Ammonium-N     | < 10 ppm           | 5.9 ppm.       | OK             |
| Phosphorus     | 1 - 5 ppm          | 9.5 ppm.       | HIGH           |
| Potassium      | 150 - 275 ppm      | 93 ppm         | MEDIUM         |
| Magnesium      | > 60 ppm           | 128 ppm        | OPTIMUM        |
| Calcium        | > 250 ppm          | 503 ppm.       | OPTIMUM        |
| Aluminum       | < 10 ppm           | 0.4 ppm.       | OK             |
| Boron          | 0.05 - 0.50 ppm    | 0.43 ppm       | OPTIMUM        |
| Copper         | 0.01 - 0.5 ppm     | 0.086 ppm      | OPTIMUM        |
| Iron           | 0.3 - 5.0 ppm      | 0.51 ppm       | OPTIMUM        |
| Manganese      | 0.1 - 3.0 ppm      | 0.84 ppm       | OPTIMUM        |
| Sodium         | < 100 ppm          | 153 ppm        | HIGH           |
| Sulfur         | 25 - 100 ppm       | 349 ppm        | HIGH           |
| Sinc           | 0.3 - 3.0 ppm      | 0.10 ppm       | LOW            |

## Same soil sample: Modified Morgan's (field soil) test results – UMaine lab

| Level<br>Found   | 6.1                  | 6.14            | 394                     | 53               | 6   10           | )48             | 8393       | 14.1(A)           | 4.9    | 14.0          | 68.0          | 13.2    |
|------------------|----------------------|-----------------|-------------------------|------------------|------------------|-----------------|------------|-------------------|--------|---------------|---------------|---------|
|                  | Soil pH              | Lime<br>Index 2 | Phosphorus<br>(1b/A)    | s Potass<br>(1b/ |                  | nesium<br>.b/A) |            | CEC<br>(me/100 g) | K      | Mg<br>(% Satu | Ca<br>ration) | Acidity |
| Optimum<br>Range | 6.0-7.0              | N/A             | 40-80                   | 400-             | 600              |                 |            | > 5               |        | 10-20         | 60-80         | < 10    |
| Level<br>Found   | 11.0                 | 270             | 0.36                    | 10.5             | 15.8             | 6               | . 4        | Addi              | tional | Results c     | or Commen     | its:    |
|                  | Organic<br>Matter(%) | Sulfur<br>(ppm) | Copper<br>(ppm)         | Iron<br>(ppm)    | Mangane<br>(ppm) |                 | inc<br>pm) |                   |        | AL BACKGRO    |               |         |
| Normal<br>Range  | 8-12                 | > 25            | .2560                   | 5 - 10           | 4 - 8            | 3   1 -         | - 2        |                   | no he  | ealth risk    | ι.            |         |
| Level<br>Found   | 1.7                  | 192             | 3.05                    |                  | 184              | 12              |            |                   |        |               |               |         |
| (Extras)         | Boron<br>(ppm)       | Sodium<br>(ppm) | Soluble Sa<br>(mmhos/cm |                  | trate-N<br>(ppm) | Ammon:<br>(ppi  |            |                   |        |               |               |         |
| Normal<br>Range  | 0.5-1.2              | < 200           | < 4.0                   | 10               | 0-200            | < 1             | 0          |                   |        |               |               |         |



know your organic fertilizer options, beyond compost

# common organic soil amendments

- N: soy, peanut, feather meal; Chilean (sidedress)
- P: bone meal, bone char, rock phos
- K: potassium sulfate, sul-po-mag, greensand
- Ca: lime, gypsum
- Mg: lime, sul-po-mag, epsom salts
- Blends: ProGro, Cheep-Cheep, alfalfa meal etc.
- Micros: compost, borax, Azomite, chelates
- Organic matter: compost, peat moss

# PRO-GRO 5-3-4 A NATURAL/ORGANIC FERTILIZER

This product is blanded from the following list of natural ingredients:

BONEMEAL ROCK PHOSPHATE COLLOIDAL PHOSPHATE CYSTER MEAL KELP MEAL

GREENSAND LANGBEINITE VEGETABLE PROTEIN MEALS MEAT AND BONE MEAL NATURAL NITRATE OF SODA LEATHER NEAL FISH MEAL BENEFICIAL BACTERIA HUMATES TFACE MINERALS



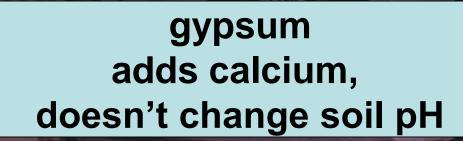
# NITRATE OF SODA For Greener Growth 16-0-0 NET WT. 5 LBS.



For K, potassium sulfate is a better value, unless you also need magnesium

# sul-po-mag 0-0-22-11 Mg (same as langbenite, Kmag)






potassium sulfate 0-0-50 "fines" are more available



peat moss adds organic matter, not nutrients

PEA



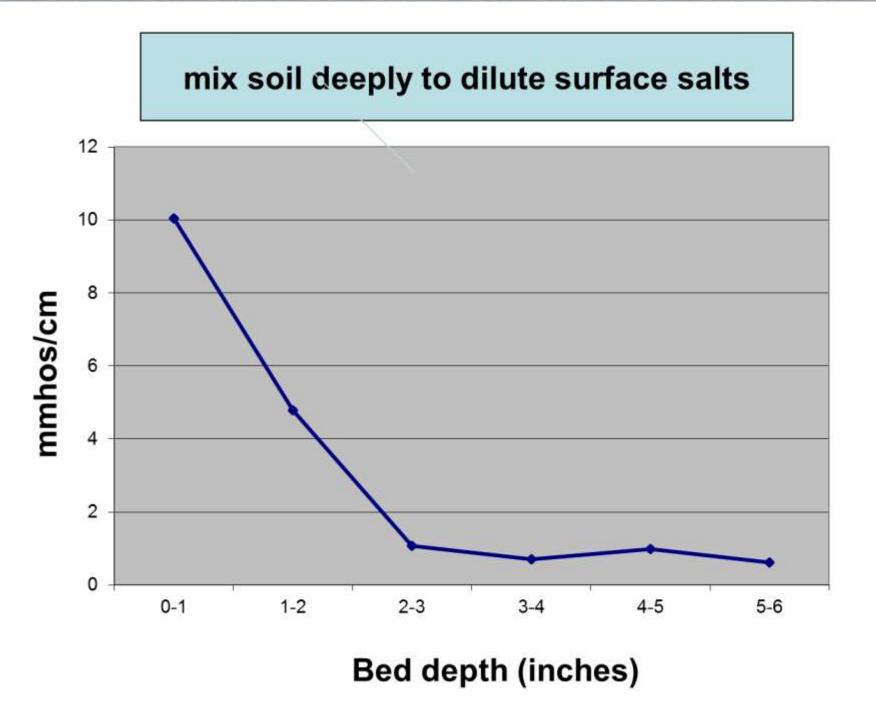
Sim

GYPSUM

Care for your Sail

3-5 bales compressed peat moss per 1000 sq ft (+ lime if needed)

# TIGERORGANIC SULPHUR


#### EVERY ACRE, EVERY CROP, EVERY YEAR



Sulfur lowers soil pH in tunnel, just like for blueberries.

spread soil amendments materials evenly!

SETTIME ET TRET TE



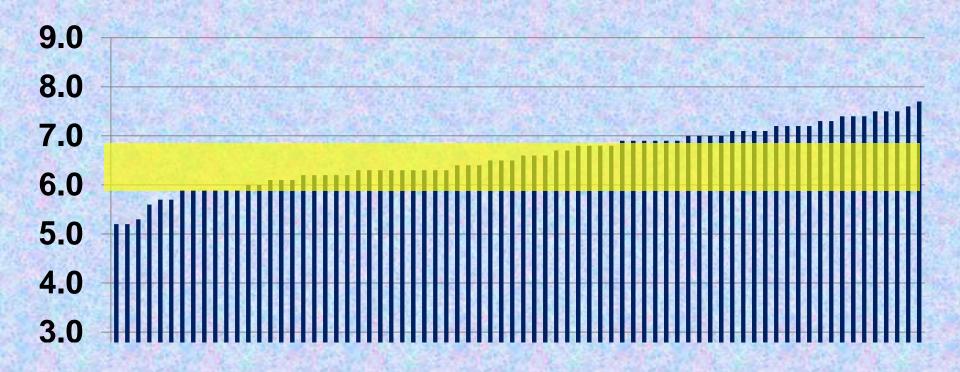
### maintain OM: compost, peat moss, and/or cover crops



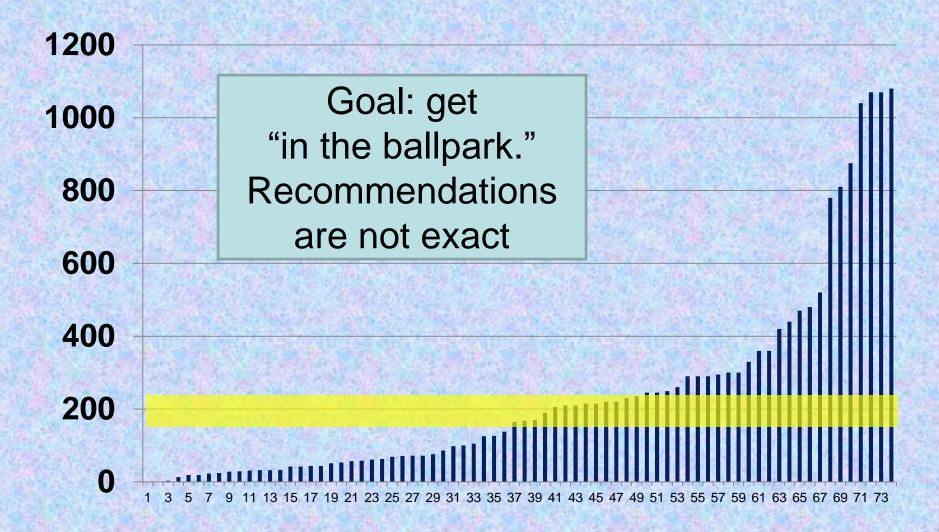
#### How important is cover cropping to tunnel soil fertility? fall-planted oats



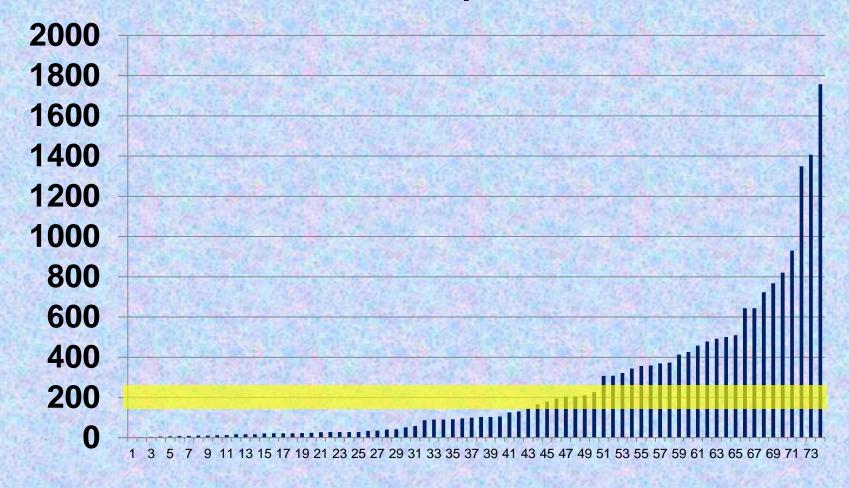
#### summer-planted cowpeas


#### buckwheat

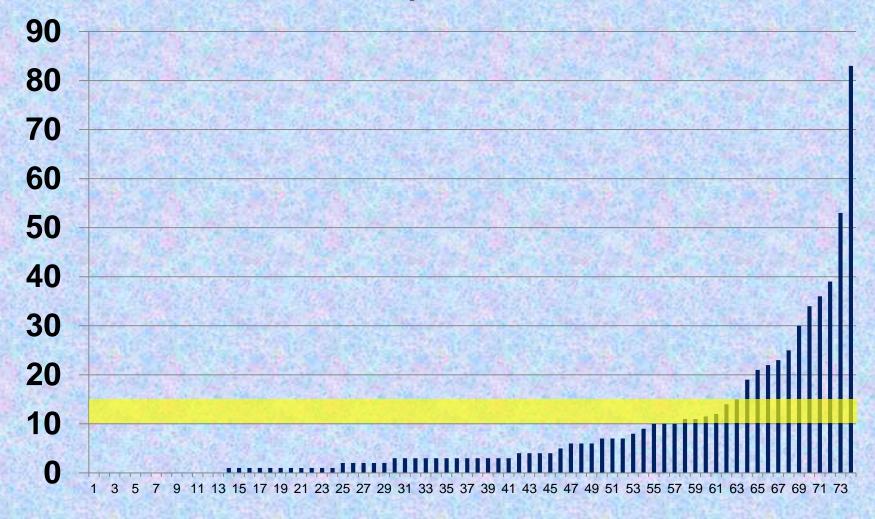
1 2 2 2


4 3 4 2

What have we found out about tunnel in-ground soil fertility on commercial farms?


### pH of tunnel 'soil' 75 VT farm samples 2008-09




### ppm NO<sub>3</sub>-N in tunnel 'soil' 75 VT farm samples 2008-09



### ppm K in tunnel 'soil' 75 VT farm samples 2008-09



### ppm P in greenhouse 'soil' 75 samples 2008-09



# 2018 New England Tomato High Tunnel Study

JERMON.

EEFTHER & BERRY GROWERS

WEGETABLE BERRY GROWER'S ASSOC.





University of New Hampshire

MAINE

**Cooperative Extension** 

UNIVERSITY OF RHODE ISLAND COOPERATIVE EXTENSION



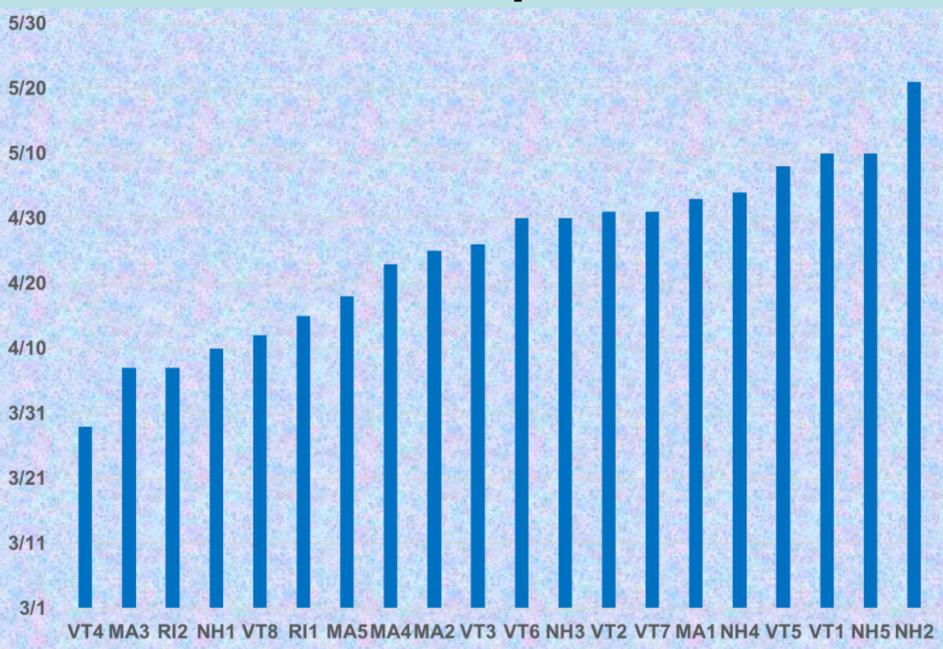
### **Purpose of the Study**

To improve our understanding of tunnel tomato production practices, with a focus on crop nutrition, across New England.

This was a 'landscape scan' of management and fertility practices for in-ground tomatoes.

Results will help Extension identify research needs and improve recommendations.




Data collected From 20 farms In-ground culture Slicers

- Compaction
  - Spacing / # of leaders
  - Irrigation
  - Fertilizer
  - Pesticides
  - Varieties
  - Yield
  - Monthly Lab Analyses:
    - Modified Morgan
    - Saturated Media
    - Leaf Tissue

## **Production practices used**

- 13 of 20 farms planted Geronimo
- 12 farms used grafted plants
- 11 farms are certified organic
- Avg. of 1.8 drip lines/row, 11 farms fertigate
- 9 farms used more than one leader/plant
- Mulch: black plastic (6), white plastic (4), none (3), landscape fabric (3), weed mat (2), silver (1)

### **Tomato transplant date**



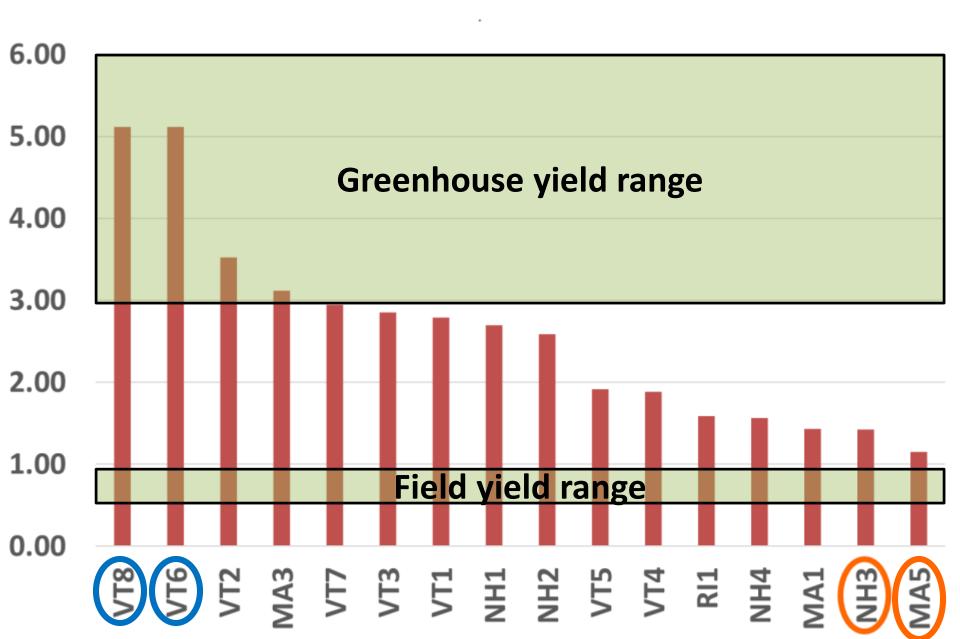
### Monthly crop images



May 1st

June

July




August

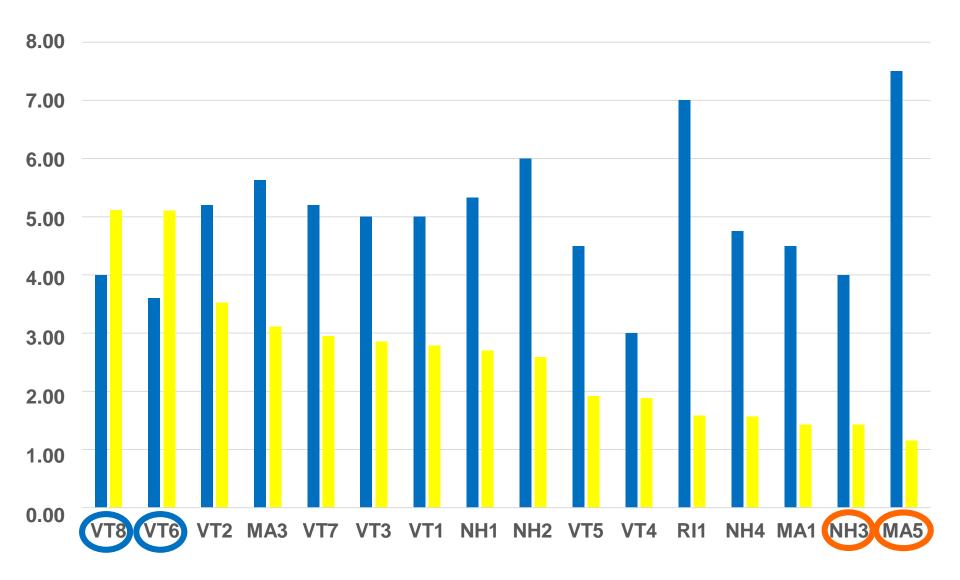
September

November

### Yield lbs per ft<sup>2</sup>

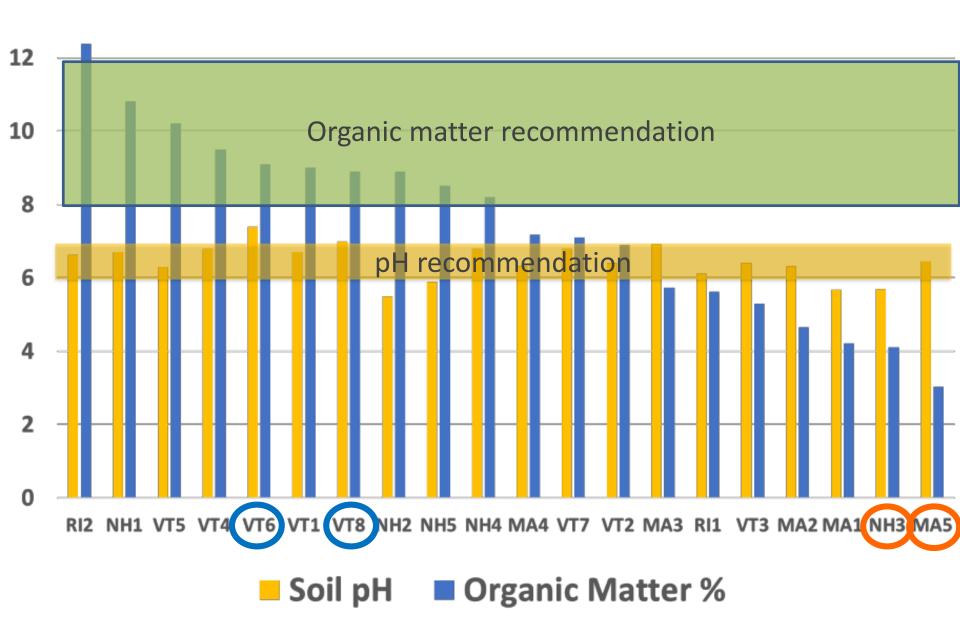


#### Estimating N fertilizer needs for in-ground high tunnel tomatoes


all values are approximate

Vern Grubinger 2-14-19

|               | Yield goal | =Yield  | =Yield lb/stem | plant  | Total N need    | Total N need  |
|---------------|------------|---------|----------------|--------|-----------------|---------------|
|               | lb/acre    | lb/sqft | =4 sqft        | height | lb/acre         | lb/1,000 sqft |
| Field         | 20,000     | 0.5     | 2              | 4'     | 150 (veg guide) | 3.44          |
| average yield |            |         |                |        | @ 50% recovery  |               |
| Tunnel        | 40,000     | 1       | 4              | 6'     | 150             | 3.44          |
| low yield     |            |         |                |        | @ 100% recovery |               |
| Tunnel        | 80,000     | 2       | 8              | 8′     | 200             | 4.59          |
| medium yield  |            |         |                |        | @ 100% recovery |               |
| Tunnel        | 120,000    | 3       | 12             | 10'    | 250             | 5.74          |
| good yield    |            |         |                |        | @ 100% recovery |               |
| Tunnel        | 160,000    | 4       | 16             | 12′    | 300             | 6.89          |
| high yield    |            |         |                |        | @ 100% recovery |               |

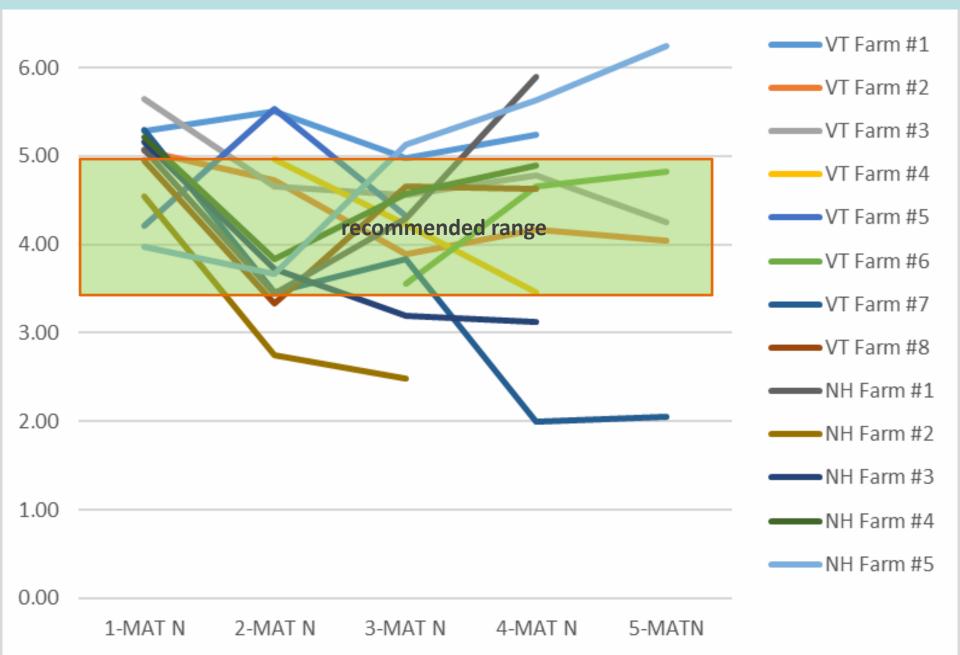

### Total yield and plant spacing

Yield (yellow) and square foot per leader (blue)

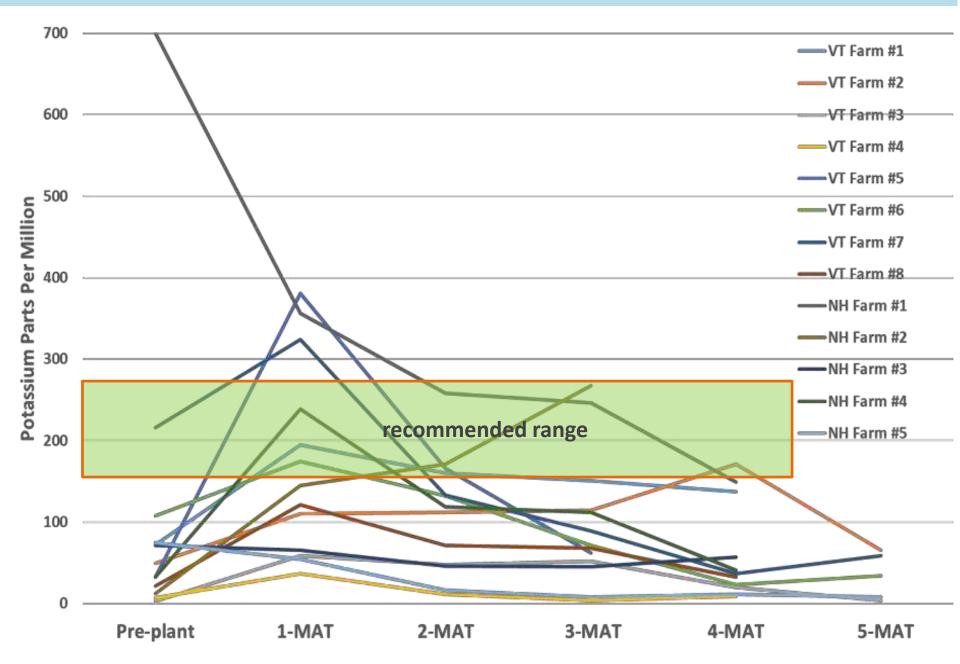


### One month after transplanting

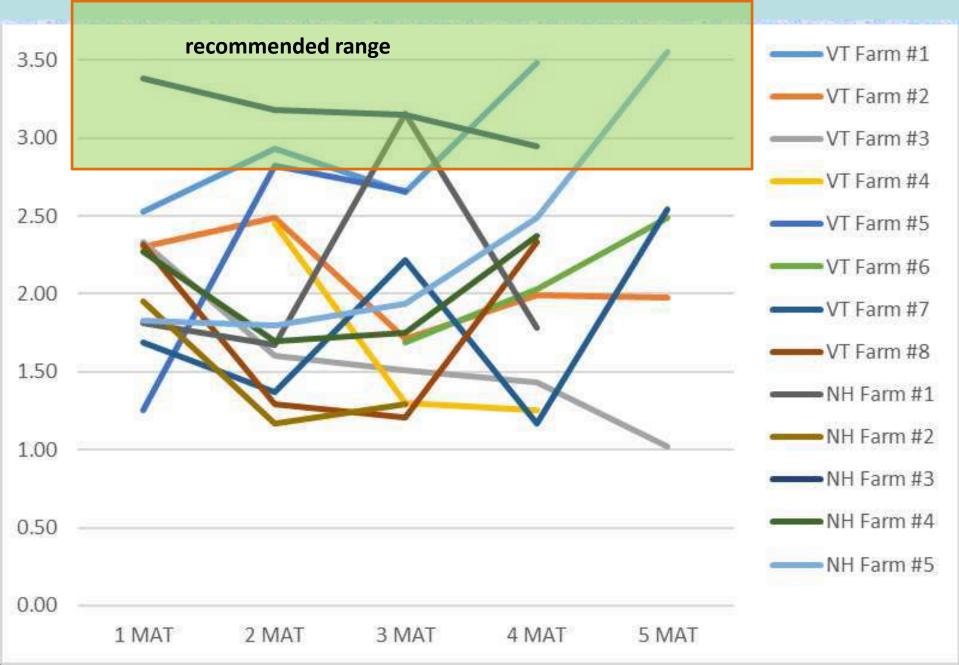
14



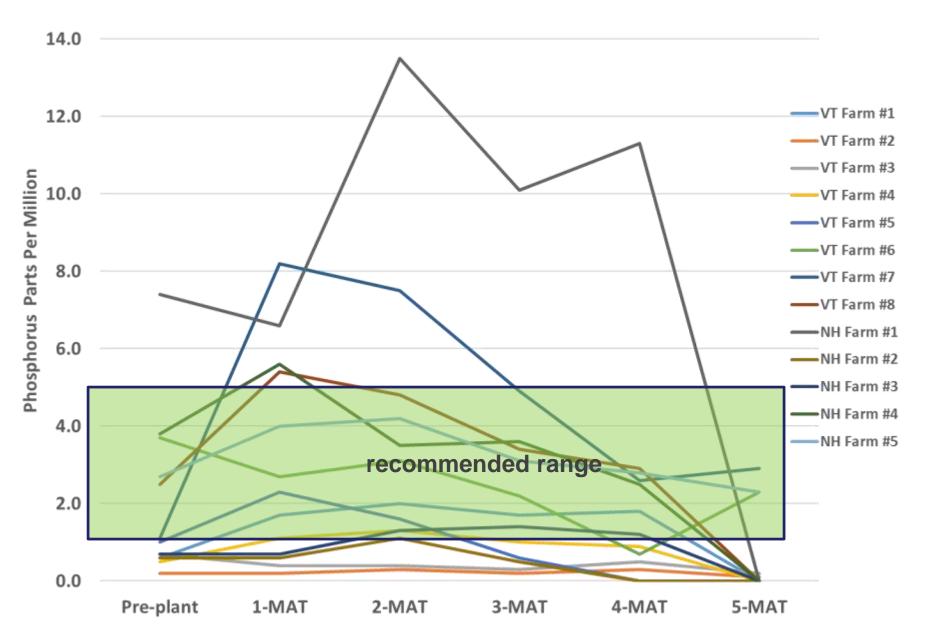

#### Saturated Media ppm soil NO<sub>3</sub>-N


—VT Farm #2 650 —VT Farm #3 600 VT Farm #4 550 —VT Farm #5 500 -VT Farm #6 Parts Per Million 450 —VT Farm #7 400 —VT Farm #8 350 —NH Farm #1 300 Nitrate-N —NH Farm #2 250 NH Farm #3 200 -NH Farm #4 150 recommended range MH Farm #5 100 50 0 Pre-plant 1-MAT 2-MAT 3-MAT 4-MAT 5-MAT

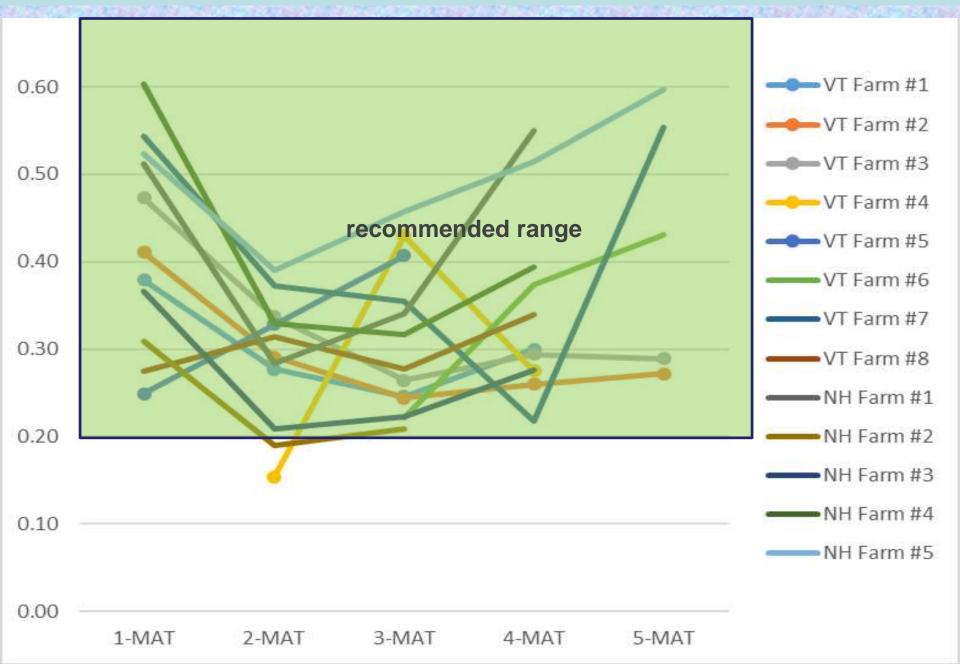
——VT Farm #1


### % N in leaf samples




#### Saturated Media ppm soil K

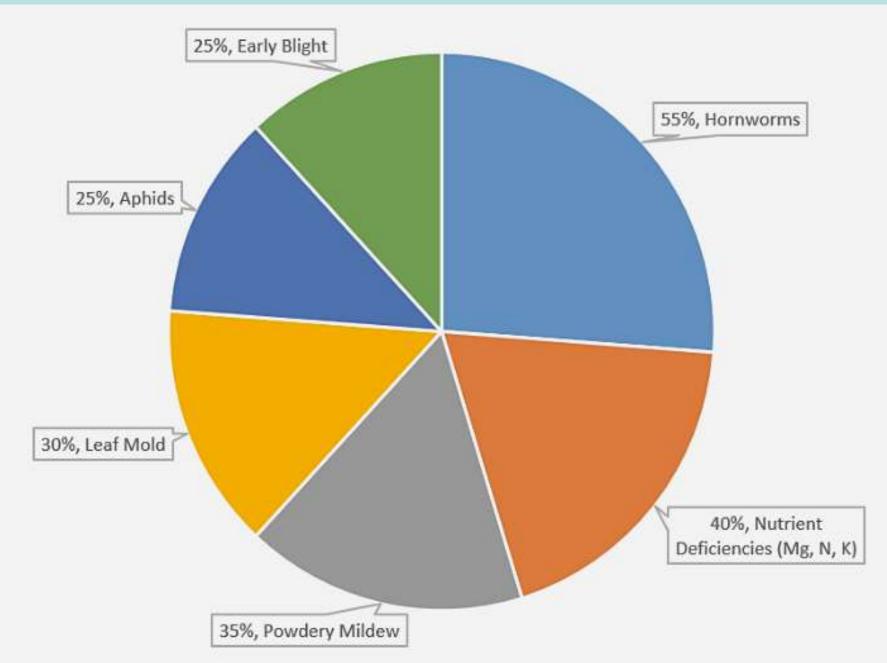



### % K in leaf samples



### Saturated media ppm soil P




### % P in leaf samples



#### Factors besides nutrients affected yield

Tomato Hornworm Manduca quinquemaculata

### Top insects and diseases reported



Powdery Mildew Oidium lycopersici, Leveillula taurica

### Botrytis canker (Botrytis cinerea)

### Leaf Mold (*Passalora fulva*)

# Soil compaction does not appear to be widespread, but it can be a problem in tunnels



Test before planting using penetrometer in 10+ locations. If >300 psi is found at less than ~15 inches, subsoil or form raised beds.



Use enough drip lines to moisten the entire rooting area when irrigating

|                                                | Top Yield (5lbs/ft <sup>2</sup> ) | Bottom Yield (1lbs/ft <sup>2</sup> ) |  |
|------------------------------------------------|-----------------------------------|--------------------------------------|--|
| Years in Production                            | 20                                | 6                                    |  |
| Variety                                        | Geronimo grafted                  | Geronimo grafted                     |  |
| Compaction                                     | None                              | 15 cm                                |  |
| Fertigate?                                     | No                                | Yes                                  |  |
| Pests                                          | Hornworm                          | Hornworm and<br>Powdery Mildew       |  |
| Feet <sup>2</sup> per Leader                   | 4.15                              | 7.5                                  |  |
| Nutrients applied<br>lbs/1,000 ft <sup>2</sup> | 15 N, 14 P, 34 K                  | 5 N, 2 P, 3 K                        |  |
| рН                                             | 6.9                               | 6.4                                  |  |
| Soil Organic Matter                            | 9.1%                              | 3.9%                                 |  |

## Recommendations

- Estimate your target yield then track yields
- Consider tighter plant spacing, if appropriate
- Measure soil compaction, address if needed
- Add irrigation lines for uniform soil moisture
- Keep up with leaf pruning
- Scout for pests often; be prepared to manage them
- Adjust soil pH to 6-7, aim for organic matter 6%+?
- Monitor available and reserve soil nutrient levels
- Provide sufficient N and K needed for high yields



### Thanks!

### www.uvm.edu/vtvegandberry