Making the Most of Your High Tunnels

Vern Grubinger Feb. 13, 2016

UNIVERSITY OF EXTENSION

CULTIVATING HEALTHY COMMUNITIES

many types of tunnels; many common issues

cropping systems / environmental controls vary

unheated, passive ventilation

heated 'summer' crops

unheated, passive ventilation, plus covers in winter

'ground heat' for winter greens

114

'season extension' of perennials

Key Considerations

- Site
- Structure
- Temperature
- Ventilation
- Soil Fertility
- Irrigation
- Pest Management
- Costs and Returns

got drainage, compaction, future shading?

St. I

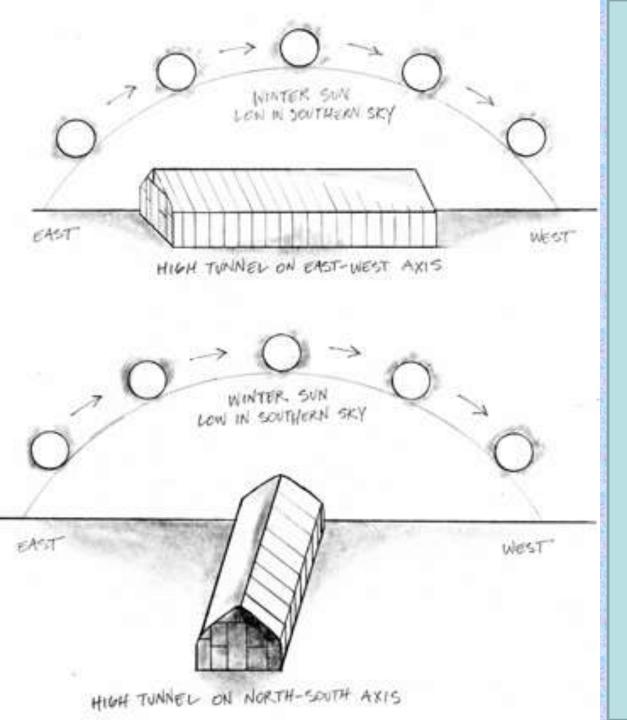
perimeter drainage may be needed: to move water from frozen ground

NEW HOLLAND

perimeter insulation keeps tunnel edges warmer

zero-wood construction for longevity and stability

equal roof pitch on each side - for snow load


greenhouse covering

 consider the options: anti-condensate, bee-friendly, energy reflecting

 PAR declines over time as plastic degrades, gets scratched. More important to change often for 'non-summer' growing

double poly for insulation and wind stability

adequate space between tunnels: shading, snow removal, mowing

Ideal orientation for max sunlight:

N/S for summer sun

E/W for winter sun

Build for worst case snow and wind

http://www.uvm.edu/vtvegandberry/factsheets/PreventGreenhouseCollapse.html

larger, taller tunnels

- allow hot air to rise above crop to vent
- less likely to overheat
- store and release more heat at night
- lower cost per sq. ft. to construct

hot and humid = open as much as you can for disease management, photosynthesis

limited water supply? gutter and cistern

side curtain/skirt and corner panels to seal out wind/snow from roll up side

heat rises; install vents near peak

Fans pull air with the least resistance

do the calculations to match boiler / furnace / heat exchangers to tunnel needs

keep the heat in: small cracks matter

knee wall insulation; heated benches

4. Street

for automated heating / venting use step controllers or accurate thermostats

DRAM

G-STAT

there are many options for temperature alarms

most efficient row arrangement: lengthwise not perpendicular

many systems for winter covering;

how much cold protection is needed? 1 < 2 < 3 layers of cover closer to the ground = warmer open in middle to avoid frozen edges

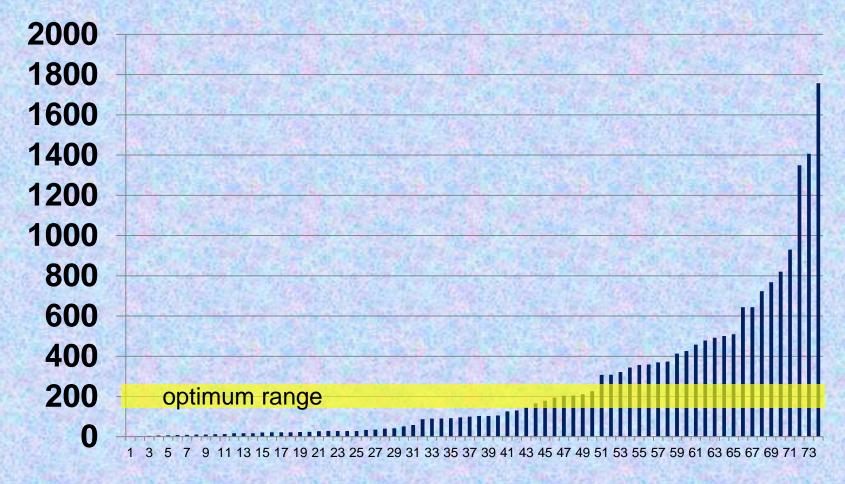
many options for surface mulches

plastic vs. landscape fabric mulch – same day, same farm

with in-ground heat, light-reflecting mulch may be more important, at least early in the growing season

in-ground soil fertility / crop nutrition

saturated media extract (SME) test vs. field soil test: soluble vs. reserve nutrients

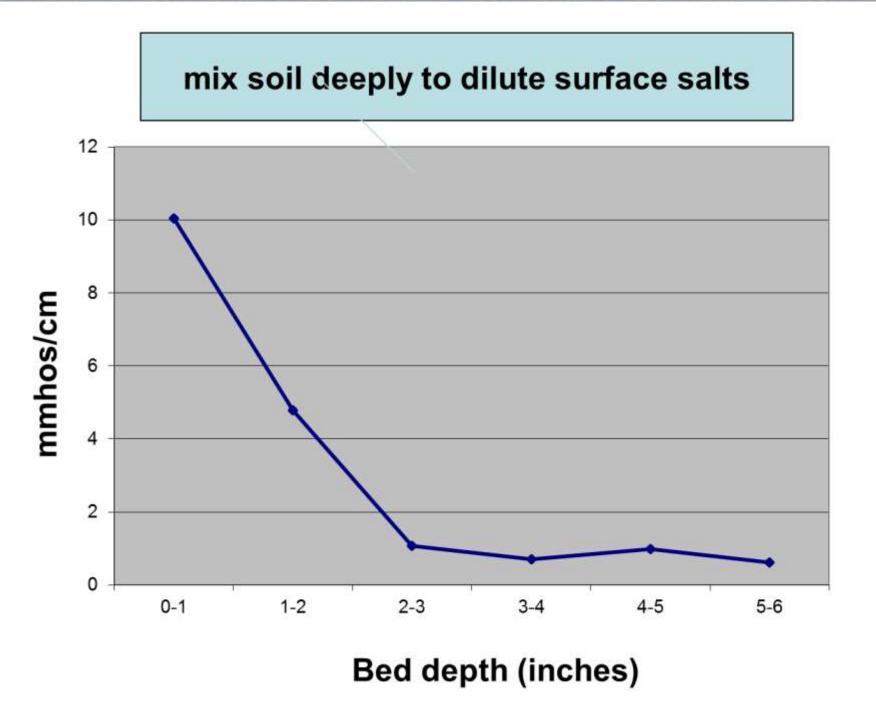

ANALYSIS OF SATURATION EXTRACT

pH: 6.9 Soluble Salts (mS/cm): 2.27	Micronutrients	mg/L
	Zinc (Zn):	0.04
Macronutrients mg/L	Boron (B):	0.18
	Manganese (Mn):	0.04
Nitrate-N (NO3-N): 162	Copper (Cu):	0.10
Ammonium-N (NH4-N): 3	Iron (Fe):	0.69
Phosphorus (P): 8	Sodium (Na):	83.19
Potassium (K): 112		19
Calcium (Ca): 211		
Magnesium (Mg): 116		
Sulfur (S): 96	50	

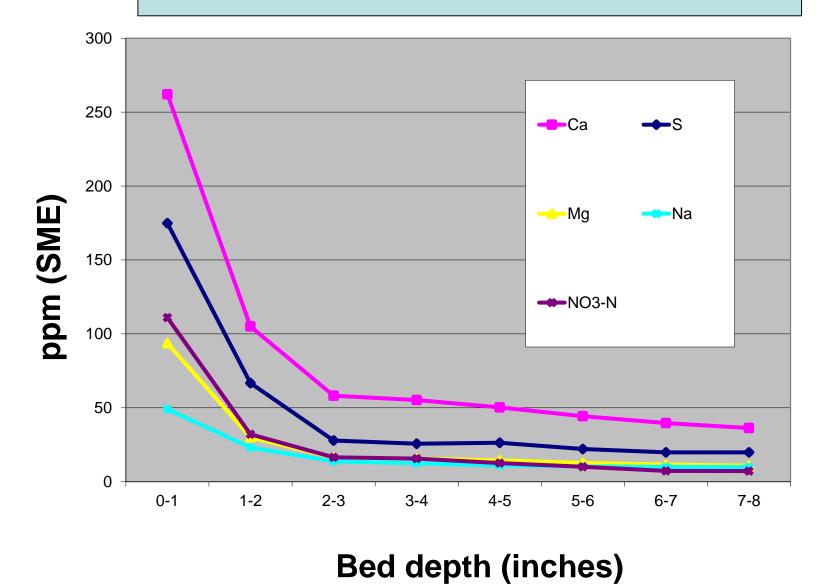
UMaine soil testing lab: long term high tunnel test. \$22 http://anlab.umesci.maine.edu/soillab_files/prices/index.html

UMass saturated media test \$15 plus organic matter \$5

K in tunnel soils 75 SME samples 2008-09

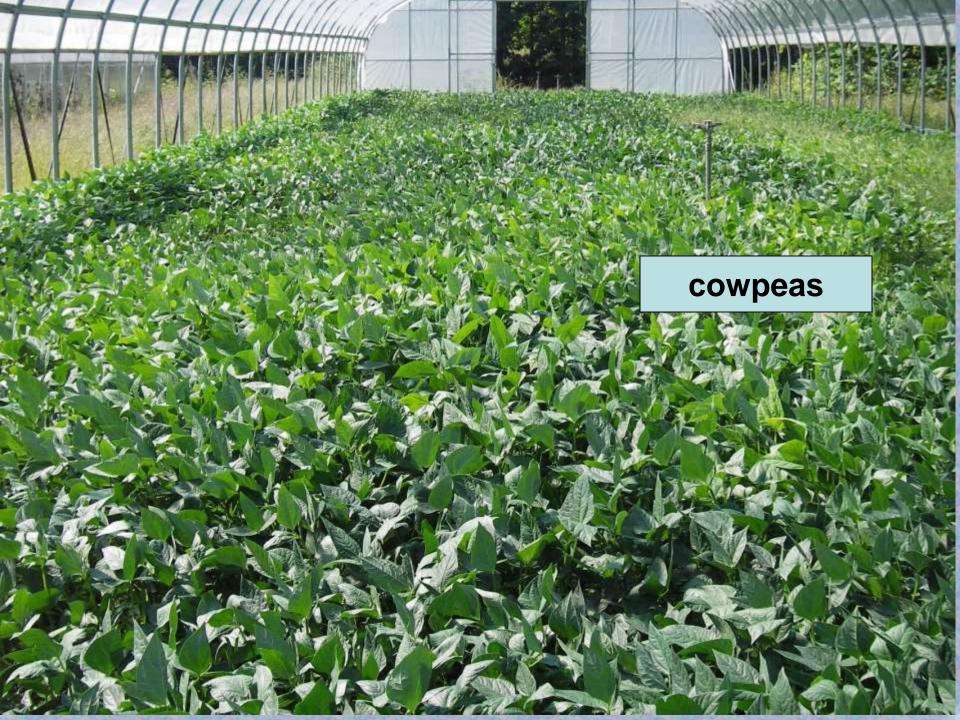


common organic soil amendments


- N: soy or peanut meal, Chilean nitrate (sidedress)
- P: bone meal, bone char (?)
- K: potassium sulfate, sul-po-mag,
- Ca: lime, gypsum
- Mg: lime, sul-po-mag, epsom salts
- Blends: ProGro, Cheep-Cheep, alfalfa meal etc.
- Micros: compost, borax, Azomite
- Organic matter: compost, peat moss

spread soil amendments materials evenly!

SETTIME ET TRET TE


mix soil deeply to distribute nutrients

maintain OM: compost, peat moss, and/or cover crops

weeds are not a good cover crop

for insect management it may best to use a 'clean fallow' between crops

eliminate all weeds...

maintain short turf around tunnels

avoid diseases: no hoses on the ground

6 12

more drip lines may be needed to wet entire root zone

roots able to grow near surface: warm, fertile, O₂

gutters can make use of available vertical space

but be aware of shading, dripping

monitor for flying insect pests

greenhouse sticky card insect count report form https://ag.umass.edu/sites/agcenter/files/pdf-doc-ppt/StickyCardsForm.pdf

using yellow sticky cards

- number cards, and place in a grid pattern
- 3-4 cards per 1,000 sq. ft.
- some cards near doors, vents, sidewalls
- clothespins / stakes to attach cards 4–6" above crop canopy
- move cards up as plants grow
- change the cards weekly
- place new cards in the same areas
- record insect counts at least weekly

marigolds for monitoring thrips

bush beans for monitoring spider mites

show me the money

Ledgewood Farm data 2011

21' x 96' unheated high tunnel for early season production

	Cut flowers	Jingle peppers	Sandwich onion	Tomatoes
Number of plants	1,350	630	3200	360
Total crop produced	2,700	25,200	3200	3,000
Unit size	10 stems	each	each	Pound
Price/unit	\$3.00	\$.20	\$.79	\$3.99
Gross income	\$8,100.00	\$5,040.00	\$2528.00	\$11970.00
Income/foot ²	\$4.01	\$2.50	\$1.25	\$5.94
Time of season	6/25-9/5	6/30-9/5	6/25-8/10	7/15-9/5

high tunnel enterprise budgets - 2011

Washington State Univ.

Table 3. Estimated Net Return at Various Prices and Yields of High-Tunnel Grown Tomatoes

20 x 96 unheated

Marketable Yield (pounds/tunnel)	Price (\$ per pound)						
	\$1.50	\$2.00	\$2.50	\$3.00	\$3.50		
2,500	-\$2,953.95	-\$1,703.95	-\$453.95	\$796.05	\$2,046.05		
3,000	-\$2,394.84	-\$894.84	\$605.16	\$2,105.16	\$3,605.16		
3,500	-\$1,835.73	-\$85.73	\$1,664.27	\$3,414.27	\$5,164.27		
4,000	-\$1,276.62	\$723.38	\$2,723.38	\$4,723.38	\$6,723.38		
4,500	-\$717.51	\$1,532.49	\$3,782.49	\$6,032.49	\$8,282.49		

http://cru.cahe.wsu.edu/CEPublications/FS090E/FS090E.pdf

Table 4. Estimated Net Returns (\$/tunnel) at Various Prices and Marketable Yields of High-Tunnel Grown Strawberries

Marketable Yield	Price (\$ per pound)				28 x 96 unheated	
(pounds/tunnel)	2.50	3.00	3.50	4.00	4.50	-
500	-2,700	-2,450	-2,200	-1,950	-1,700	-
750	-2,377	-2,002	-1,627	-1,252	-877	
1,000	-2,053	-1,553	-1,053	-553	-53	
1,250	-1,730	-1,105	-480	145	770	
1,500	-1,405	-655	95	845	1,595	

Note: Shaded area denotes a positive profit based on the combination of yield and price.

http://cru.cahe.wsu.edu/CEPublications/FS093E/FS093E.pdf

Cornell high tunnel enterprise budgets - 2009

http://www.hort.cornell.edu/hightunnel/business/budget.htm#recordkeeping

crop	type of high tunnel		net income	net per sq. ft.
tomato	unheated	20 x 100	\$7,029	\$3.61
winter spinach	unheated	20 x 100	\$6,351	\$3.18
winter greens	heated	30 x 120	\$8,187	\$2.27
winter greens	unheated	20 x 120	\$4,340	\$1.81
colored peppers	unheated	26 x 144	\$530	\$1.18
sweet potato	unheated	34 x 144	\$419	\$0.10

www.uvm.edu/vtvegandberry