Thioredoxin Reductase Assay

Inventors: Robert Hondal, Nicholas Heintz, Gregg Snider, Nicholas Fredette & Brian Cunniff The University of Vermont, Office of Technology Commercialization

UVM innovations

Overview

Thioredoxin reductase (TR) is an oxidoreductase responsible for maintaining thioredoxin in the reduced state, thereby contributing to proper cellular redox

Dr. Hondal and his colleagues discovered *a* new direct assay, termed the SC-TR assay, to determine the activity of TR based on the reduction of selenocystine, a diselenide-bridged amino acid. Rather than being an end-point assay as in older methods, the SC-TR assay directly monitors the continuous consumption of NADPH at 340 nm by TR as it reduces

selenocystine.

Invention

SC-TR is a continuous, direct and highly specific assay of TR in cell lysates that makes use of the reduction of selenocystine (SC). SC is a small, commercially available diselenide-containing amino acid that can be reduced only by TR. The SC–TR assay can be either performed by standard spectrophotometry or adapted for use in a 96-well plate format. The SC-TR assay measures the selenocystine reductase activity of TR in the presence of nonionic detergents such as NP-40, which is a common nonionic detergent used in a wide variety of buffers to lyse mammalian cells. The use of NP-40 or other nonionic detergents inhibits activity in the original insulin end-point assay. Dr. Hondal has demonstrated the *utility* of the assay as well as the *specificity* of the reduction of SC by TR by the use of small interfering RNA (siRNA) knockdown, TR overexpression, and inhibition by acrolein, a highly specific selenol-modifying reagent.

Advantages

- Highly specific to TR
- Continuous & direct
- Compatible with buffers containing nonionic detergents
- Less complex & less expensive than currently utilized TR endpoint assay
- Adaptable to high-throughput processes

Applications

• As assay kit for use in research or clinical settings

IP Status

Patent Application Filed

Follow us on Twitter

Connect with us on Linked In

www.uvm.edu/uvminnovations/

Learn more about their research: Dr. Hondal Dr. Heintz

For more information and licensing opportunities, contact us at: Ph: 802-656-8780 or email: innovate@uvm.edu