A newly discovered approach to the mediation of a process that regulates cell function may lead to effective treatments for a variety of diseases. GSK3β, one of two genes known to encode a type of enzyme called Glycogen Synthase Kinase-3, regulates diverse cell functions such as signaling, gene expression, and metabolism through phosphorylation of cellular substrates.

Abnormally high and low levels of GSK3β activity have been associated with a wide variety of disorders, including neurological diseases, diabetes, and cancer.

Future treatments for these disorders may be based on Dr. Rincon’s discovery.

Dr. Rincon’s research shows the ability of p38 mitogen-activated protein kinase (MAPK) to phosphorylate GSK3β activity. Activation of β-catenin-mediated signaling through GSK3β inhibition may provide a mechanism for p38 MAPK-mediated survival in specific tissues.

In conditions associated with reduced GSK3β activity, such as cancer and diabetes, treatments would be intended to reduce cell survival by inhibiting the phosphorylation of GSK3β.

In conditions associated with elevated GSK3β activity, particularly neurological conditions such as stroke, head trauma, and Alzheimer’s disease, treatments would be intended to increase cell survival by increasing the level of GSK3β phosphorylation.

- New approach to increasing or decreasing GSK3β activity
- Potential treatment for a variety of clinical disorders

Applications

- In potential disease therapies, a synthetic peptide of GSK3β (or similar small molecule) could be used as a specific GSK3β blocker.
- Antibodies that recognize the peptide may prove useful in diagnosing reduced or elevated GSK3β activity levels.

I.P. Status

US Patent # 8,445,648

Learn more about Dr. Rincon’s research at:
www.uvm.edu/~mrincon/

For more information and licensing opportunities, contact us at: Ph: 802-656-8780 or email: innovate@uvm.edu

Follow us on Twitter

Connect with us on LinkedIn

www.uvm.edu/uvminnovations/