Numerical Analysis PhD Qualifying Exam
University of Vermont, Winter 2011

1. (a) Given an initial guess x, derive Newton's method to find a better guess ; for approximating
the root of a function f(z). (b) Apply Newton's method to the function f(x) = 1/z using an
initial guess of o = 1 and find a (simple) analytical expression for 5.

Solution:

(a) Newton's method suggests we find root of the line tangent to f(x) at the point z, and use
this root as our new guess. For an initial guess of x,, we're looking for a line through the point
(x0, f(z0) with slope f'(xq). The point-slope form for this line is y — f(zo) = f'(x0)(x — x0).
Substituting y = 0 into this line, we find

vy = f (o)
f'(xo)
v =g — f (o)

(b)

o f (i)
i f/(xi)
1
=r; — 5 =2
)

Given an initial guess of zg = 1, we find 57 = 2°°.

O

2. Solve the following linear system with naive Gaussian elimination (i.e. without partial pivoting)

et 1) oy 1
1 1 ) 0

using (1) infinite precision and (2) a computer whose machine epsilon is given by €,,,.,. Label
your solutions .. and Z.om, respectively. Why is there such large difference between the two?
Note that the first pivot “z&ct is much larger than the smallest number the computer can
represent.

Solution:

(1) infinite precision



€mach
[ o ! 10 = 110
1— _
0 €mach .:1:2 €mach

10
./,Z: — 10;5mach
10_6mach

This is the correct answer, i.e. Ty, Which is approximately [—1, 1]T.
(2) On a double precision computer, the system reduces to the solution of

Cmach 1 {xl] _ 1
0 - eni?ch L2 - enjc?ch

which has the solution Zeom, = [0,1]".

Backward substitution gives

The difference |Zpue — Teomp| is quite large, O(10%). The reason is as follows. Assuming we're
using a double precision computer, where ¢, = O(10716), the first pivot is O(107'7). As a
result, the multiplier used in naive Gaussian elimination is O(10'7) leading to swamping.

10

10—€mach

The difference occurs during back substitution. Letting @ = , back substitution in part

(1) produces an equation for x; of the form

€mach

10

r1t+a=1

whose solution involves calculating 1 — «. This calculation suffers from catastrophic cancellation

in part (2).

. Apply Gram-Schmidt to find a QR-factorization of the matrix.

2 3
A=1] -2 -6
1 0
Solution:
2 2/3
Take y; = | —2 [. Thenry = ||pall, =3 and ¢1 = o —2/3 |. Then
1 = 1/3
3 2/3 -1
Yao=vo—qi(q] ~v)=1] -6 | —| =2/3 | (6)=| =2 |. ri2=(q{ -v2) =6 and
0 1/3 —2

O



~1/3

T2 = ||yall, = 3. So g2 = | —2/3 |. If we stop here, we have
—2/3
2/3 —1/3 5 6
A= | —2/3 —2/3 {0 ] 1
1/3 —2/3
If we wish to use QR for least squares, then we continue in this manner with an arbitrarily chosen
1
v = | 0 | to generate g3. A complete QR-factorization of A is
0
2/3 —1/3 2/3 3 6
A= | —-2/3 -2/3 1/3 0 3 |. Of course, there are several other QR decompositions
1/3 —-2/3 -2/3 0 0

up to a negative sign, e.g. negative entries in column 2 can be switched to positive provided
R22 = -3.

. Given an IVP ¢ = f(t,y), methods for numerical integration are distinguished by their
approximation of the integral in the formula y(t + h) = y(t) + ftt_i“ f(t,y)dt. Derive the
degree-2 Adam'’s Bashforth method (AB2) given by w; 1 = w; + %(Bfi — fi—1) in two steps:

(1) Approximate f(t,y) with a polynomial P,(t) of degree n interpolating the n + 1 points
(tizn, fi—n)s -y (tiz1, fi—1), (ti, fi). Note that you should determine the degree n based on the
specified order of accuracy of AB2. It may help to label the constant step-size in time

h = t; —t;_1.

(2) Evaluate the integral [/ P, (t)dt

Solution:

The degree 2 Adams' Bashforth method requires a polynomial of degree 1. First, we use the
Newton form of the interpolating polynomial to find P;(¢), namely

Pi(t) = fio1 + %(t - ti—l)
= fio1 + %(t — ti—l)

Then we integrate



tit1 (fi — fiz1) [(ti-i-l —tis1)? — (i — ti—l)z]
/ Pi(t)dt = fi1h +
:, 2h
L, Ui de) (22 = 02|
= fisih + o
i — Ji—1)3h
= fioih + —(f é )
2
]
5. Method
h
Yoi1 =Y, 1 = 3 (5fns1+6f0 +5fn1), where f, = f(x,,Y,), etc. (1)
can be used to solve the initial-value problem
v =f(z,y),  y(zo) = vo. (2)

Using the equation ¢y’ = —\y as a model problem (A > 0), show that this method is A-stable.
Note: A notation hA/8 = z, so that z > 0, should be helpful.

Solution:
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6. Describe how you would solve a boundary-value problem on z € [a, b]:

y'=y -z, yla)=a, yb)=p (1)
with second-order accuracy.

If you choose to use a finite-difference discretization, do the following:

e Write the equation at an internal point.
e Write the equations at the boundary points.
e Write your system of equations in matrix (or matrix-vector) form.

e Describe what method you would use to solve (or attempt to solve) your system of

equations. Provide only brief necessary details about the method's setup; do not go deeply
into its workings.

Note: |If several alternative methods can be used, describe only one of them, not all.
Also, your method does not have to be the best one; it should be just a reasonable method.

If you choose to use the shooting method, do the following:

e Write the equation (or equations) that you would be solving numerically.

e Explain what method(s) you would use to solve this equation (or these equations). You do
not need to write the equations of the method(s); just write its (their) name(s) and, if
needed, briefly justify your choice.

Note: You need to describe just one of the above methods of solution, not both.

Solution:
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7. A method .
n+1 n o __ n n n+1 n+1
U7 =0 = o5 (Ui = U = U7 + U) (1)
is proposed by some people in the computational finance community in connection with solving
the initial-boundary-value problem for the Heat equation:

Up = Uz, rel0,1], t>0; uw(0,t) =, u(l,t)=0, u(x,0)=p(x). (2)
(In Eq. (1), x and h are the temporal and spatial steps, and U} is the numerical approximation
to u(jh, nk).)

(a) Explain how this seemingly implicit scheme can be solved recursively, i.e. without inverting
any matrix.

Hint: Draw the grid for the BVP (2) and try to find the solution node-by-node at the first time
level. (The initial condition is prescribed at the zeroth time level.)

(b) Use the von Neumann analysis to show that this scheme is unconditionally stable.

Solution:

11
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