Graduate Student Handbook for the University of Vermont
Electrical Engineering (EE) Graduate Degree Programs

Applicable for all students beginning their programs after January 1, 2017.

Contents
1 Introduction ... 2
2 Electrical Engineering Graduate Program Faculty.. 2
3 Graduate Student Classifications and Admission Requirements 3
4 Requirements for the M.Sc. Degree in Electrical Engineering .. 4
4.1 M.Sc. Thesis Option .. 5
4.2 M.Sc. Project Option ... 5
4.3 M.Sc. Coursework Option ... 5
4.4 M.Sc. - Accelerated Masters Program ... 5
5 Requirements for the Ph.D. Degree in Electrical Engineering ... 6
5.1 Coursework .. 7
5.2 Comprehensive Examination .. 7
5.3 Dissertation Proposal .. 8
5.4 Dissertation Defense ... 8
6 General information for Graduate Students.. 9
6.1 Graduate Program Applications ... 9
6.2 Funding Policies .. 10
6.3 Duration of GTA Funding ... 11
6.4 Annual Reports .. 11
6.5 Graduate Student Grants and Travel Funds ... 11
6.6 Information Available Online .. 12
6.7 Cyril G. Veinott Award .. 12
1. Introduction

The Electrical Engineering program at the University of Vermont (UVM) offers programs of study leading to the M.Sc. and Ph.D. degrees in Electrical Engineering. In addition the EE program partners with other academic units to offer M.Sc. and Ph.D. degrees in materials science and the Ph.D. degree in bioengineering. Areas of research expertise in electrical engineering include control systems, electromagnetics & optics, electric energy & power systems, solid state physical electronics, semiconductor materials and devices, wireless communications, VLSI design & testing, and biomedical engineering.

Candidates normally have obtained the Bachelor of Science degree in electrical engineering prior to application for admission, but applicants from other disciplines are encouraged to consider the program if they have an extensive background in both mathematics and the physical sciences. The general requirements for admission must be met in all cases. A master’s degree in electrical engineering or the equivalent is required for admission to graduate studies for the Ph.D. degree. Successful completion of the Ph.D. comprehensive examination is required for advancement to candidacy for the Ph.D. degree.

This guide to the graduate program in Electrical Engineering at the University of Vermont is designed to help each student plan a program of graduate study leading to either, or both, the M.Sc. or Ph.D. degrees in electrical engineering. As such, it is devoted to the policies, rules, and procedures of our graduate program in Electrical Engineering with the intention of providing a general framework for your graduate studies. Any unanswered questions should be addressed to your faculty advisor, the EE graduate program coordinator, or the Graduate College. Notice that the program requirements for both the M.Sc. and Ph.D. degrees subsume the Graduate College requirements that are described in the Graduate Catalogue. It is the Graduate College that awards each graduate degree so that their rules must either be satisfied or subsumed by program rules. For general information regarding graduate studies at the University of Vermont, see the Graduate College webpage (http://www.uvm.edu/~gradcoll/).

2. Electrical Engineering Graduate Program Faculty

The following full-time faculty members advise students pursuing M.Sc. and Ph.D. degrees in Electrical Engineering:

- **Professor Kurt Oughstun** (Ph.D., Univ. of Rochester, 1978). Electromagnetic and optical field theory, wave propagation phenomena, and applied mathematics.
- **Professor Walter J. Varhue** (Ph.D., Univ. of Virginia, 1984). Deposition of electronic thin film materials by plasma enhanced chemical vapor deposition (PECVD) and their characterization for microelectronic applications.
- **Professor Jeff Frolik** (Ph.D., Univ. of Michigan, 1995). Sensor networks, wireless communications, and distributed control.
• **Associate Professor Josh Bongard** (Ph.D., Univ. of Zurich, 2003). Evolutionary robotics, machine learning and crowdsourced design.

• **Associate Professor Paul Hines** (Ph.D. Carnegie Mellon Univ. 2007). Electrical energy systems and policy. Complex networks.

• **Assistant Professor Mads Almassalkhi** (Ph.D., Univ. of Michigan, 2013). Power systems, model predictive control and optimization.

• **Assistant Professor Mary Dunlop** (Ph.D. California Institute of Technology, 2008). Feedback and dynamics in microorganisms with the goal of building programmable gene circuits using biological sensors and devices.

• **Assistant Professor Hamid Ossareh** (Ph.D. Univ. of Michigan, 2013) Systems and control theory, constrained and predictive control, applications of control theory to automotive and power systems.

3. **Graduate Student Classifications and Admission Requirements**

Graduate students in electrical engineering are classified as either Master of Science (M.Sc.) Program Students, Master of Science (M.Sc.) Candidates, Ph.D. Program Students, or Ph.D. Candidates, defined as follows:

• **M.Sc. Program Admission**: Requires an accredited bachelors’ degree in engineering, physics, mathematics, computer science, or other appropriate field. Admission into the M.Sc. Program requires that the applicant have an undergraduate grade point average above 3.0 (based on a 4.0 scale), that their EE course grades are strong (B average or better), and that their letters of recommendation are all positive. In borderline cases, specific scholastic requirements may need to be set by the EE Graduate Program Committee.

• **M.Sc. Candidacy**: Requires a bachelors’ degree in electrical engineering (or its equivalent) from an accredited institution.

 - A student with a bachelors’ degree in either physics, mathematics, computer science, or other engineering area will be considered for candidacy after successful completion of the following undergraduate electrical engineering courses (or their equivalent at either the undergraduate or graduate level): one course in electronics at the level of EE120 or higher, one course in signals and systems at the level of EE 171 or higher, one course in electromagnetic field theory at the level of EE 141 or higher, one course in computer hardware at the level of EE134 or higher, and one course in solid state devices at the level of EE 163 or higher.

 - A student with a bachelors’ degree in a field other than those stated above will be considered on an individual basis by the EE Graduate Program Committee.
• Ph.D. Program Admission: Requires a M.Sc. degree in Electrical Engineering or its equivalent. A graduate student who meets the requirements for candidacy for the M.Sc. degree in Electrical Engineering and has completed twenty-four (24) credit hours of appropriate graduate course work with a B average (3.0 on a 4.0 scale) or better qualifies to apply to the Ph.D. program. An applicant to the Ph.D. program may be admitted provisionally based on a B average or better in twenty-four (24) hours of appropriate graduate coursework toward the M.Sc. in Electrical Engineering.

• Ph.D. Candidacy: Requires a M.Sc. degree in Electrical Engineering or the equivalent and the successful completion of the Ph.D. Comprehensive Examination.

Appropriately qualified applicants to our graduate program are either (1) admitted to graduate studies leading to the M.Sc. degree, or (2) admitted to graduate studies leading to the Ph.D. degree.

4. Requirements for the M.Sc. Degree in Electrical Engineering

The M.Sc. degree in electrical engineering requires, at a minimum, 30 credit hours at the 200 level or higher, including the EE M.Sc. core requirement consisting of either EE 301 (System Theory) or EE 302 (Stochastic Processes), and the completion of a comprehensive examination. All courses should be selected in consultation with the student’s graduate advisor in order to best prepare the student for their research and/or career objectives. To bolster his/her background in a particular area and with their advisor’s approval, a student may apply three credits of EE 100 or higher coursework to their M.Sc. degree requirements. All graduate students are required to register and attend EE393 graduate seminar course (0 - 1 credit) each semester. The students should register 1 credit at least once prior to graduation.

Students can choose, in consultation with their graduate advisor, between a thesis option, a project option, and a coursework option. Students who are funded with a GTA or a GRA are required to choose between the thesis or project options. Students are highly encouraged to check frequently with the graduate college for general UVM M.Sc. degree requirements and deadlines.

4.1 M.Sc. Thesis Option

<table>
<thead>
<tr>
<th>Total credits</th>
<th>(\geq 30) credits, selected with guidance from a graduate faculty advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE coursework</td>
<td>(\geq 15) credits, selected with guidance from a graduate faculty advisor, including either EE 301 or EE 302 or equivalent</td>
</tr>
<tr>
<td>Thesis research credits</td>
<td>(\geq 6) credits (EE 391) under supervision of an EE graduate program faculty member</td>
</tr>
<tr>
<td>Thesis committee</td>
<td>The student should work with their graduate advisor to choose a thesis committee consisting of three regular faculty members, with not less than two from the EE graduate program faculty.</td>
</tr>
<tr>
<td>Comprehensive exam</td>
<td>The student must orally present a proposal for their thesis research at least 3 months prior to graduation. The student’s thesis committee will orally examine the student based on the student’s coursework and research focus.</td>
</tr>
<tr>
<td>Thesis</td>
<td>A thesis must be completed, under the supervision of an EE graduate program faculty member. The written thesis must meet Graduate College requirements and be defended orally in public forum. See the Graduate College requirements.</td>
</tr>
</tbody>
</table>
4.2 M.Sc. Project Option

<table>
<thead>
<tr>
<th>Total credits</th>
<th>≥ 30 credits, selected with guidance from a graduate faculty advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE coursework</td>
<td>≥ 18 credits, selected with guidance from a graduate faculty advisor, including either EE 301 or EE 302 or equivalent</td>
</tr>
<tr>
<td>Project research credits</td>
<td>≥ 3 credits (EE 392) under supervision of an EE graduate program faculty member</td>
</tr>
<tr>
<td>Project committee</td>
<td>The student should work with their graduate advisor to choose a project committee by their second semester consisting of three regular faculty members, with not less than two from the EE graduate program faculty who approve the project.</td>
</tr>
<tr>
<td>Comprehensive exam</td>
<td>The student must orally present a proposal for their project research approximately 6 months prior to graduation. The student’s project committee will orally examine the student based on the student’s coursework and research focus.</td>
</tr>
<tr>
<td>Project</td>
<td>The project topic is selected after consultation with an EE graduate faculty member and must not be the same as any project performed as part of a paid position. A written project report must be completed under the supervision of an EE graduate faculty member. The project should be orally presented in a public forum and approved by a committee of at least three faculty members, with not less than two from the EE graduate program faculty.</td>
</tr>
</tbody>
</table>

4.3 M.Sc. Coursework Option

The coursework option is available only to students with prior substantial engineering experience in industry. Students interested in the coursework option should discuss the details with the EE graduate program coordinator.

<table>
<thead>
<tr>
<th>Total credits</th>
<th>≥ 30 credits, selected with guidance from a graduate faculty advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE coursework</td>
<td>≥ 21 credits, selected with guidance from advisor, including either EE 301 or EE 302 or equivalent</td>
</tr>
<tr>
<td>Exam committee</td>
<td>The student should work with their graduate advisor to choose a comprehensive exam committee consisting of three regular faculty members, with not less than two from the EE graduate faculty.</td>
</tr>
<tr>
<td>Comprehensive exam</td>
<td>The student must complete a written and/or oral comprehensive exam during the final semester of residence at UVM. The student’s written report is to be defended before the exam committee.</td>
</tr>
</tbody>
</table>

4.4. M.Sc. - Accelerated Masters Program

Qualified undergraduate students who plan to earn a thesis-based master’s degree in Electrical Engineering may enroll in the program’s Accelerated M.Sc. Degree Program (AMP). This program enables the student to begin working on a master’s degree while still an undergraduate. The basic requirements for admission to and completion of this program are as follows:

- Interested students must apply to the Accelerated M.Sc. Program in the second semester of their junior year no later than April 15.
• In order to be admitted to the Accelerated M.Sc. Program, the student must have a cumulative grade point average of at least 3.2 at the time of application, and they must submit a letter of application to the EE Graduate Program Coordinator naming an EE graduate program faculty member who has agreed to serve as their graduate advisor.
• Upon being admitted into the Accelerated M.Sc. Program, the student may take up to 9 credit hours of courses for graduate credit while still an undergraduate. Of these, up to 6 credit hours of 200-level or higher courses can be counted toward both the B.Sc. and M.Sc. degrees, subject to the approval of the student’s graduate advisor.
• Students in the AMP typically begin work toward their master’s thesis starting in the summer following their junior year.
• All other requirements for the thesis option M.Sc. degree apply.

5. Requirements for the Ph.D. Degree in Electrical Engineering

The Ph.D. degree in electrical engineering is designed to prepare students for advanced careers in engineering research, development and education.

Students seeking admission to the Ph.D. degree program are required to have completed the M.Sc. degree in Electrical Engineering or its equivalent. A graduate student who meets the requirements for candidacy for the M.Sc. degree in Electrical Engineering and has completed twenty-four (24) credit hours of appropriate graduate coursework with a B average (3.0 on a 4.0 scale) or better qualifies to apply to the Ph.D. program. An applicant to the Ph.D. program may be admitted provisionally based on a B average or better in twenty-four (24) hours of appropriate graduate coursework toward the M.Sc. in Electrical Engineering. All graduate students are required to register and attend EE393 graduate seminar course (0 - 1 credit) each semester. The students should register 1 credit at least once prior to graduation.

To be a candidate for the Ph.D. degree one must complete the M.Sc. degree in Electrical Engineering or the equivalent and successfully complete the Ph.D. Comprehensive Examination. The following sections describe the Ph.D. degree requirements in detail. Table 1 provides a timeline for completing the Ph.D. degree in four years.

Table 1: Suggested 4 year timeline for completing the Ph.D. degree

Year 1, Fall	EE 301 or EE 302 and ENGR 201
Year 1, Spring	Submit coursework plan to the studies committee
Year 1, Summer	Ph.D. comprehensive exam
Year 2, Fall.	EE 301 or EE 302
Year 2, Spring	Complete coursework requirements.
Year 3, Fall	Select dissertation committee
Year 3, Spring	Present dissertation proposal
Year 4, March	Submit complete dissertation to committee
Year 4, April	Dissertation defense
Year 4, May	Submit final, edited dissertation. Graduation.
5.1 Coursework
A total of seventy-five (75) credit hours of graduate work are required for the Ph.D. degree, with at least 51 credits taken in residence at UVM. These courses should be selected to meet the following requirements:

- Two courses to satisfy the EE Ph.D. core requirement (≥ 6 credit hours), which consists of EE 301 (System Theory) and EE 302 (Stochastic Processes). These courses are typically offered in alternate years in the fall semester. To achieve candidacy, students must complete both courses with a B or better grade.

- At least three additional courses (≥ 9 credit hours) of advanced topics in electrical engineering (200 or higher) specifically selected with your graduate advisor to facilitate your research goals.

- To bolster his/her background in a particular area and with their advisor’s approval, a student may apply three credits of EE 100 or higher coursework to their Ph.D. degree requirements. These credits may apply to the 75 in total required but not to the 15 credits of EE coursework specified above.

- One credit hour of Engineering Ethics (ENGR 201) taken in the first available Fall semester after entering graduate studies.

- A student with a M.Sc. degree in Electrical Engineering can apply up to twenty-four (24) credit hours from this M.Sc. degree toward the Ph.D. coursework requirements, subject to the approval of the EE graduate studies committee.

- At least 20 credit hours of EE 491, doctoral dissertation research, supervised by the student’s Ph.D. advisor.

- Following the successful completion of all course and research credits, students requiring continuing registration must enroll in either GRAD 901 (less than 50% effort), GRAD 902 (50% effort), or GRAD 903 (more than 50% effort) as a reflection of their current research activity.

Students should complete a coursework plan in their first year of Ph.D. studies, and submit this plan to the graduate studies committee for review.

5.2 Comprehensive Examination
In order to be advanced to candidacy for the Doctor of Philosophy in Electrical Engineering, a Ph.D. Program Student is required to pass the Comprehensive Examination, prior to the start of a candidate’s 3rd semester of study. To be eligible for taking the exam, the student must have completed taking one of the two EE core courses (EE 301 or EE 302) with passing grades B or higher. Candidacy is achieved with successful completion of the exam and successful completion (B or higher) of the second EE core course (EE 301 or EE 302) in their 3rd semester.
The Written Part

The written part of the examination will be a report presented in the form of an IEEE conference paper, with the format of double column and maximum length of 6 pages. The paper will be focused on a research topic in the area of the candidate’s dissertation work, and will comprise three Specific Aims.

1. Introduction, background and literature review related to the research problem. Development of a comprehensive bibliography related to their research topic.
2. A clear description of open issues related to the research topic. Discussion of the value and innovative aspects of the student’s proposed research.
3. Proposed research approach description, hypothesis(es) and/or goal(s), potential barriers and possible solutions, preliminary data, and experimental design plan.

The first aim will demonstrate the student’s ability to collect and contextualize prior art in the area of research. The second aim will demonstrate the student’s ability to identify new research problems and justify their value to the field. The third aim will be a “stretch aim” that extends beyond the completed aspects of the candidate’s research. In this third aim, the candidate will be expected to exhibit evidence of an ability to generate imaginative and thoughtful hypotheses, and to think laterally about how their PhD research area could be developed in a new direction. The candidate should gain the approval of their thesis committee regarding the general area of the proposal prior to beginning work on it.

The Oral Part

The oral part of the comprehensive examination will be a formal seminar by the student in front of the faculty committee, to take place after the committee members have had a chance to review the written report, which should be in the hands of the committee members at least 2 weeks prior to the oral presentation. The student will be asked to defend the paper and to answer any additional questions the committee members feel appropriate. It is expected that there will be specific questions directly associated with broad electrical engineering fundamentals. The expectation is that the oral portion will be completed prior the start of the student’s 3rd semester.

After the oral part of the exam, the committee will meet to discuss both written and oral components. The committee will then decide if the student can proceed to complete the PhD, if the exam needs to be retaken (1 time maximum), or (in the case of repeat failure) the student may be allowed to complete work for a master’s degree. After successful completion of the exam, the student will still need to complete his/her second EE core course (EE 301 or EE 302) with a B grade or better to achieve candidacy. It is expected for Ph.D. students to achieve candidacy no later than the beginning of their 4th semester of studies.

5.3 Dissertation Proposal

Nominally in their third year of study, a Ph.D. candidate will form a dissertation committee, in consultation with the student’s research advisor. This committee should be composed of 4-5
members of the UVM Graduate College, with at least one member from outside of the EE faculty (to serve as Chair) and at least two members from within the EE graduate program faculty.

A dissertation proposal should be developed after the student has submitted at least one journal paper based on their research at UVM. The dissertation proposal, which is comprised of a written proposal with an oral presentation (open to the public), requires a comprehensive prior art review, a discussion of the student’s work to date, and a detailed plan for the research that is expected to complete the dissertation.

5.4 Dissertation Defense

The dissertation defense is given to the selected dissertation committee only after the dissertation proposal has been successfully completed and approved by the dissertation committee.

The written dissertation should comprehensively describe the methodology and results from the student’s research. The general standard for the dissertation is the completion of at least two manuscripts appropriate for publication in a high quality, peer-reviewed venue, such as an IEEE transactions journal or a leading international peer-reviewed conference, one of which should be accepted for publication.

The dissertation defense is open to the public, and should include a comprehensive oral presentation of the student’s research results, as well as questioning from the public and the student’s dissertation committee.

6 General information for Graduate Students

6.1 Graduate Program Applications
In order to be considered for admission to Electrical Engineering or Biomedical Engineering M.S. or Ph.D. programs, you will need to complete the UVM graduate admissions application process. In addition, if you are interested in financial support in the form of a Graduate Research Assistantship or a Graduate Teaching Assistantship you may wish to write to one of the program faculty members whose research interests align with yours. However, please note that offers of financial support can only be made after a student has completed the application process described below.

Checklist of Required Application Materials
a) Application (online)
 https://www.applyweb.com/uvmg/menu.html
b) Resume
c) Statement of Purpose
d) Three Letters of Recommendation
e) Transcripts: One official Transcript from each institution attended
f) Test Scores: GRE, TOEFL/IELTS (can be waived for the student who has received a college degree from a University in North America).
g) Application fee: $65 paid with submission of online application

Deadline for Application and Financial Aid

- *Fall Semester Enrollment:*
The official deadline is April 1. However the Department of Electrical and Biomedical Engineering will start the graduate application reviews and assistantship position (GRA/GTA) allocations starting from January 1, and will continue until all positions have been filled. Applicants are highly encouraged to complete their application packaged before January 1.

- *Spring Semester Enrollment:*
The official deadline is November 15. However the Department of Electrical and Biomedical Engineering will start the graduate application review and assistantship (GRA/GTA) allocation starting from October 1. Applicants are highly encouraged to complete their application packaged before October 1.

Test Scores Requirement for GRE and English Proficiency Examinations

- **Graduate Record Examination (GRE):**
 Verbal and quantitative scores are required.

- **TOEFL or IELTS score**
 TOEFL or IELTS score is required for an international student who does not have a college degree from an accredited university in North America.
 - Minimum acceptable **TOEFL** scores for admission:
 Internet based: 90
 Paper Based: 577
 - Minimum acceptable **TOEFL** scores for Graduate Teaching Assistant (GTA) funding:
 Internet based: 100
 Paper Based: 600
 - Minimum acceptable **IELTS (academic version)** scores for admission: 6.5
 - Minimum acceptable **IELTS (academic version)** scores for GTA funding: 7.0

6.2. Funding Policies

In order to maintain a healthy level of activity in our graduate program, a proper balance must be maintained between the University supported GTA positions and externally supported Research Assistantships (GRA positions). In recruiting students, special attention must be given to diversity and excellence and capability of performing well as Graduate Teaching Fellows in the operation of our teaching laboratories and courses.
GTA funding is typically awarded only to Ph.D. and M. Sc. thesis option students with a priority given to full-time Ph.D. students.

In order to assist in the effort to locate qualified individuals and to help maintain a healthy stream of potential GRAs to our research programs, each faculty member will be encouraged to recruit one new potential graduate student. It will be the responsibility of each faculty member to both seek an individual that meets the goals stated above, and to initially welcome and advise that student once arriving at UVM. Once at UVM the student may elect to take any member of the EE Graduate Program Faculty as their advisor (with that faculty member’s concurrence) without affecting their original graduate teaching assistantship.

The EE Graduate Program Faculty will discuss the awards of GTA positions in a formal meeting chaired by the EE Graduate Program Coordinator. All the operational duties of the Graduate Program, such as organizing applications and assisting committees in administering comprehensive examinations, will be performed by the EE Graduate Program Coordinator. Awards made during the summer will be coordinated with two members of the Graduate Program Faculty, if possible.

The potential faculty advisor may select a student who has originally stated an interest in pursuing a degree in either the Materials Science or Biomedical/Bioengineering Engineering Programs with their advisor in Electrical Engineering. If the student wishes to change to an advisor who is not a member of the EE Graduate Program Faculty, they will forfeit their GTA position.

6.3 Duration of GTA Funding

A M.Sc. thesis option student may only receive GTA funding for no more than two years. If the student then continues on to the Ph.D. program, this two years of funding is then counted in the same manner as any other Ph.D. student (i.e., flexibility in funding is allowed).

Maintaining GTA funding requires that a student maintain good academic standing as evidenced by an overall GPA of 3.0 or higher, the completion of appropriate coursework, and acceptance as a thesis student by one of the EE Graduate Program Faculty, and adequately meeting all GTA responsibilities.

The performance of GTA-funded students will be reviewed midway through each semester in order to determine whether or not funding will be continued in the following semester.

6.4 Annual Reports

All Ph.D. students must prepare, in coordination with their faculty advisor, and submit an Annual Report to the EE Graduate Program Coordinator. This annual report is due on the last weekday of March and is to be used by the EE Graduate Program Faculty to assess the progress of each student toward the successful completion of their Ph.D. at UVM as well as to aide the faculty in determining both GTA and GRA funding offers for the next academic year.
This annual report, due before the end of March each academic year, should include the student’s study/thesis committee members, coursework plan and completed course grades, comprehensive exam status, teaching duties, research description, research progress, and research presentations and publications.

6.5 Graduate Student Grants and Travel Funds

UVM’s Graduate College provides information available to graduate students seeking specific funding for academic, research, and travel endeavors. The Funding Manual for Graduate Students, a list of graduate student fellowship competitions sponsored by such organizations as the National Science Foundation, the American Association of University Women, and the Ford Foundation, is updated each year and published in the Spring. This manual is available in the Graduate College and each of the UVM Libraries. In order to assist graduate students in attending national meetings to present papers or poster, the Graduate College, through the Graduate Student Advisory Committee (GSAC), can provide some funds on a department matching-fund basis. Application forms are available in the Graduate College Office.

The Department of Electrical and Biomedical Engineering will provide a 1:1 match for Graduate Colleges obtained to support student travel. The request must be made in written to the Department Chair and will be approved by the faculty as a whole.

6.6 Information Available Online

The best place for updated information about graduate studies at UVM is the graduate college web site: http://www.uvm.edu/~gradcoll/

The following links may also be helpful:

Graduate Student Costs at UVM
- Tuition and fees: http://www.uvm.edu/~stdfinsv
- Living and housing: http://www.uvm.edu/studentlife and http://reslife.uvm.edu

Application Procedure & General Information
- Admissions web site with application deadlines: http://www.uvm.edu/~gradcoll/?Page=admissions.html
- UVM catalog: http://www.uvm.edu/academics/catalogue
- Graduate college: http://www.uvm.edu/~gradcoll/

6.7 Cyril G. Veinott Award

1 Cyrill G. Veinott (1905–2001) graduated from UVM in 1926 with a B. Sc. degree in electrical engineering and became the Chief Engineering Analyst of Reliance Electric Company. He was awarded the 1977 IEEE Nikolai Tesla Award for “his leadership in development and application of small induction motors.”
The Cyril G. Veinott (Graduate) Award, first given in 1989, is given annually to a senior graduate student in electrical engineering “for excellence in performance and greatest promise of success”. Past recipients of the Cyril G. Veinott (Graduate) Award are:

- 2016 - Yu Zhang
- 2015 - Pooya Rezaei
- 2014 - Clark VanDam
- 2013 - Anbu Venkatachalam
- 2012 - Christopher Palombini
- 2008 - Richard P. Ketcham
- 2007 - Mohamed Elfataoui
- 2006 - Benji L. Capsuto
- 2005 - J. Brooks Zurn
- 2004 - Timothy J. Campbell
- 2003 - Seth A. Maciejowski
- 2002 - Jacob H. Galbreath
- 2001 - Thang V. Nguyen
- 2000 - Theodore M. Kawenski
- 1999 - Tien H. Nguyen
- 1998 - Hong Xiao
- 1997 - Matthew W. Deming
- 1996 - Valerie H. Chickanosky
- 1995 - Mohamed Z. Abd El Aziz
- 1994 - Paul D. Smith
- 1993 - Randall J. Landry
- 1992 - Judith Elizabeth Keil Laurens
- 1991 - Frederick L. Stone
- 1990 - William H. Tihen
- 1989 - Nicholas L. Volkringer