Interspecific competition limits the realized niche of *Fraxinus nigra* along a waterlogging gradient

Christopher E. Looney, Anthony W. D’Amato, Shawn Fraver, Brian J. Palik, and Lee E. Frelich

Abstract: Gradient studies of wetland forests have inferred that competition from upland tree species confines waterlogging-tolerant tree species to hydric environments. Little is known, however, about competition effects on individual-tree growth along stress gradients in wetland forests. We investigated tree growth and competition in mixed-species stands representing a waterlogging stress gradient in *Fraxinus nigra* Marsh. (black ash) forests in Minnesota, USA. Using competition indices, we examined how *F. nigra* basal area increment (BAI) responded to competition along the gradient and whether competition was size-asymmetric (as for light) or size-symmetric (as for soil resources). We modeled spatial distributions of *F. nigra* and associated tree species to assess how variation in species mixtures influenced competition. We found that although *F. nigra* BAI did not significantly differ with variations in site moisture, the importance of competition decreased as waterlogging stress increased. Competition across the gradient was primarily size-asymmetric (for light). Variation in species mixtures along the gradient was an important influence on competition. Some segregation of tree species occurred at all but the most upland site, where waterlogging stress was lowest and evidence of competition was greatest, confirming that competition from upland tree species confines *F. nigra* and potentially other waterlogging-tolerant species to hydric environments.

Key words: environmental stress gradient, black ash wetlands, size symmetry, species interactions, point pattern analysis.

Introduction

Variations in resource availability across a given landscape can strongly influence plant–plant interactions, affecting the growth, composition, size, and spatial distributions of plant populations (Keddy 2001). In forest ecosystems, topographic variation in soil moisture can create stress gradients with implications for tree growth and forest composition (Dymond et al. 2016). This effect may be especially dramatic in wetland forests where relatively minor topographic changes can alter tree exposure to waterlogging stress, reflecting the magnitude, timing, and duration of soil saturation (Dudek et al. 1998).

In upland forests, topographic variation can influence the nature of tree–tree competition and may even shift tree–tree interactions along an abiotic stress gradient from competition to facilitation (Callaway 2007). Topographic variation is also theorized to shift tree–tree competition from size-asymmetric (as for light) to size-symmetric (as for soil resources) with increasing stress (Coomes and Grubb 2000), a pattern that has been observed along a topographic gradient in New Zealand *Nothofagus solandri* var. *cliffortioides* (Hook.F.) Poole (mountain beech) forests (Coomes and Allen 2007). Species traits may interact with variations in abiotic stress to influence the growth response to competition, as
evidenced by increased growth of *Pseudotsuga menziesii* (Mirb.) Franco (Douglas-fir) in stands with poor soils and two-species combinations, as opposed to pure stands, along a Dutch soil fertility gradient (Lu et al. 2018).

Gradient studies of wetland forests have focused on the longer term population-level outcomes of competition (e.g., Denneler et al. 2000), rather than on the shorter term influence of competition on individual-tree growth (sensu Keddy 2001). Denneler et al. (2000) observed that abiotic factors alone failed to account for the confinement of boreal wetland tree species to hydric sites along a flood gradient in Quebec and suggested that competition may play an additional role. In a gradient study of mixed-species floodplain forests in Florida before and after dam construction, Smith et al. (2013) inferred from changes in forest composition that competition from upland tree species confines less productive, waterlogging-tolerant tree species to hydric environments.

Fraxinus nigra Marsh. (black ash) is a waterlogging-tolerant tree species that ranges from southeastern Canada to the western Great Lakes region of the USA (Wright and Rauscher 1990). In the postglacial topographic setting of northern Minnesota, USA, *F. nigra* occurs within an environmental gradient between mesic uplands and wet peat-influenced bottomlands (Minnesota Department of Natural Resources [MNDNR] 2003). At the mesic upland margins of the gradient, *F. nigra* occurs with hardwoods such as *Acer saccharum* Marsh. (sugar maple) and *Tilia americana* L. (American basswood), *Populus tremuloides* Michx. (quaking aspen), and *Betula* (birch) spp. (MNDNR 2003). At the wet bottomland margins of the gradient, *F. nigra* is most often associated with the coniferous species *Thuja occidentalis* L. (northern white-cedar; MNDNR 2003). Variation in the traits of these *F. nigra* associated species suggests that differences in waterlogging stress may account for the dominance of *F. nigra* at the center of the gradient, where *F. nigra* helps regulate spring-summer water-table rise through evapotranspiration (Slesak et al. 2014). Anoxic soil conditions associated with waterlogging from water-table rise negatively impact the growth and survival of many species (Kozlowski 1997), and *F. nigra* may aid in the survival of less waterlogging-tolerant species on the moister sites where it is dominant (Davis et al. 2017). On sites subject to lower waterlogging stress, the intermediate shade tolerance of *F. nigra* is expected to render this species at a competitive disadvantage relative to shade-tolerant upland species such as *Acer saccharum* (Keddy and MacLellan 1990).

Previous studies of competition effects on individual-tree growth in *F. nigra* forests have focused largely on monospecific stands (Looney et al. 2016), with conflicting results (Benedict and Frelich 2008). Based on a simple measure of stand density, Benedict and Frelich (2008) found that *F. nigra* competition along the gradient shifted from size-asymmetric (as for light) to size-symmetric (as for soil resources) with increasing stress, and (iii) how variations in species mixtures reflected in tree spatial distributions influenced *F. nigra* competition along the gradient. Because *F. nigra* forests are threatened by the invasive insect emerald ash borer (EAB; *Agrilus planipennis* Fairmaire, 1888; Costanza et al. 2017), the overarching goal of our research was to better inform management strategies to maintain post-EAB forest function.

Methods

Site description

The study took place in six mixed-species *F. nigra* stands on the Chippewa National Forest in northern Minnesota, USA (Fig. 1). The climate is continental, with most precipitation occurring from May through September. Mean 1981–2010 temperatures for January and July were −13.7 and 16.5 °C, respectively, while mean precipitation totaled 742 mm year⁻¹ (PRISM Climate Group 2015).

Using the U.S. Forest Service FSVeg Database (https://www.fs.fed.us/nrm/fsveg, accessed 21 May 2014) and the Minnesota native plant community classification system (MNDNR 2003), we identified potential sites at the *F. nigra* forest margins representing a range of moisture conditions and containing a minimum of 30 trees each of *F. nigra* and at least one associated tree species with a diameter at breast height (DBH) ≥ 10 cm. We selected six sites for sampling: Wilderness Lake, Round Lake, Third River, Kupcho Run, Pigeon Lake, and Virgin Lake (Fig. 1). The Kupcho Run site was located within a multi-aged stand dating to the pre-settlement era (A.W. D’Amato and M.R. Reinikainen, unpublished data). We observed isolated treefall gaps and snags but no evidence of extensive tree mortality at any site, suggesting that the stands had experienced only minor disturbances in recent decades. Major tree and understory plant indicator species varied among sites (Table 1). The Wilderness Lake and Round Lake sites were located within 30 m of lakes, whereas no other site was located near a lake, river, or stream. Based on Soil Survey Staff (2016) data and observed site drainage features described below, water table rise above the soil surface occurs annually on all but the Wilderness Lake site. We did not note evidence of present or past beaver activity that would have altered site hydrology.

Soil type, duration of observed ponding, and depth to the water table varied by site (Table 1). In early June 2014, we observed no ponding at Wilderness Lake, which was elevated on a gently downward-sloping bluff with minimal variation in its flat surface topography. We observed vernal pooling in topographic depressions that persisted into mid-June at Round Lake, mid-July at Third River, and mid-July at Kupcho Run. The Round Lake and Third River sites were slightly sloping, whereas Kupcho Run had minimal slope. At Pigeon Lake and Virgin Lake, which were bottomsland floodplain sites with large areas of topographic depression, we observed extensive ponding with minor stream flows into mid-August. To better characterize variation in depth to the water table both within and between sites, in August 2014, we used a hand trowel to sample for the presence of standing or shallow soil water (≤10 cm depth of soil surface), using a grid of 48 points with 10 m spacing (Table 1; Supplementary Fig. S1). Based on soil type, observed ponding, and depth to the water table, sites increased in waterlogging stress in the following order: Wilderness Lake, Round Lake, Third River, Kupcho Run, Virgin Lake, and Pigeon Lake (Table 1).
Field data collection

We used QGIS software (Quantum GIS Development Team 2014) to randomly generate a single initial sampling point per stand on which we established the southwest plot corner. In summer 2014, we installed one 50 × 70 m (0.35 ha) plot per stand. We assessed all live trees ≥10 cm DBH with in each plot for species, DBH, stem Cartesian (x and y) coordinates, and crown class (Oliver and Larson 1996). Trees were sampled if their bases were located within plot boundaries, regardless of lean. Each plot was divided along the y axis into seven 10 × 50 m transects to facilitate increment core sampling. Within each transect, we sampled every third tree by collecting a single increment core at 1.37 m above ground level, to pith when possible. To avoid directional bias, we systematically cored trees from the four cardinal directions.

![Fig. 1. Study site locations in the Chippewa National Forest, Minnesota, USA.](image)

Table 1. Summary of stand and physical characteristics for six sites located in Fraxinus nigra forest in northern Minnesota, USA.

<table>
<thead>
<tr>
<th>Site</th>
<th>Wilderness Lake</th>
<th>Round Lake</th>
<th>Third River</th>
<th>Kupcho Run</th>
<th>Pigeon Lake</th>
<th>Virgin Lake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (trees·ha⁻¹)</td>
<td>149</td>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ACSA</td>
<td>40</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BEAL</td>
<td>217</td>
<td>151</td>
<td>320</td>
<td>346</td>
<td>326</td>
<td>497</td>
</tr>
<tr>
<td>FRNI</td>
<td>57</td>
<td>106</td>
<td>80</td>
<td>114</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>FRPE</td>
<td>6</td>
<td>29</td>
<td>183</td>
<td>226</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>POTR</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>117</td>
<td>343</td>
</tr>
<tr>
<td>THOC</td>
<td>166</td>
<td>149</td>
<td>0</td>
<td>54</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TIAM</td>
<td>66</td>
<td>66</td>
<td>23</td>
<td>37</td>
<td>66</td>
<td>37</td>
</tr>
<tr>
<td>Other</td>
<td>703</td>
<td>646</td>
<td>606</td>
<td>777</td>
<td>526</td>
<td>960</td>
</tr>
<tr>
<td>Total BA (m²·ha⁻¹)</td>
<td>31.1</td>
<td>21.8</td>
<td>28.3</td>
<td>26.5</td>
<td>39.7</td>
<td>45.4</td>
</tr>
<tr>
<td>FRNI % BA</td>
<td>25.5</td>
<td>15.4</td>
<td>38.1</td>
<td>26.5</td>
<td>69.3</td>
<td>47.8</td>
</tr>
<tr>
<td>QMD (cm)</td>
<td>21.5</td>
<td>17.4</td>
<td>28.3</td>
<td>20.8</td>
<td>41.0</td>
<td>25.2</td>
</tr>
<tr>
<td>Understory plants</td>
<td>CAPE6, COCO6</td>
<td>CAPE6, GLST</td>
<td>CACA4, ALINR</td>
<td>CACA4, STROC</td>
<td>ONOCL, CAPAP6</td>
<td>CAPAP6, GLST</td>
</tr>
<tr>
<td>Soil</td>
<td>Aquic Glossudalf</td>
<td>Molic Psammaquent</td>
<td>Histic Humaquept</td>
<td>Histic Humaquept</td>
<td>Typic Haplosaprist</td>
<td>Typic Haplosaprist</td>
</tr>
<tr>
<td>Ponding</td>
<td>None</td>
<td>Mid-June</td>
<td>Mid-July</td>
<td>Mid-July</td>
<td>Mid-August</td>
<td>Mid-August</td>
</tr>
<tr>
<td>Soil water (% site)</td>
<td>0.0</td>
<td>20.8</td>
<td>22.9</td>
<td>35.4</td>
<td>56.2</td>
<td>60.4</td>
</tr>
</tbody>
</table>

Note: Tree species abbreviations: ACSA, Acer saccharum; BEAL, Betula alleghaniensis; FRNI, Fraxinus nigra; FRPE, Fraxinus pennsylvanica; POTR, Populus tremuloides; THOC, Thuja occidentalis; TIAM, Tilia americana; Other, minor species. BA, basal area. QMD, quadratic mean diameter. Plant symbols: CAPE6, Carex pensylvanica; COCO6, Corylus cornuta; GLST, Glyceria striata; CACA4, Calamagrostis canadensis; ALINR, Alnus incana; STROC, Streptopus roseus; ONOCL, Onoclea sensibilis; CAPAP6, Caltha palustris. Ponding, observed duration of ponding in spring–summer 2014. Soil water, % of site with water at or ≤10 cm below soil surface. Sites are arranged from left to right to represent the gradient of waterlogging stress.
beginning on the north side of the stem for the first tree sampled and rotating the direction of coreing 90° clockwise for each subsequent tree. We sampled *F. nigra* on all sites to assess growth. We sampled *A. saccharum*, *F. pennsylvanica*, and *T. americana* at Round Lake, *A. saccharum* and *T. americana* at Wilderness Lake, *P. tremuloides* and *F. pennsylvanica* at Third River and Kupcho Run, and *T. occidentalis* at Pigeon Lake and Virgin Lake. We relocated sampling points within stands when the initial point fell within an area lacking target tree species and randomly selected additional trees for coring in GIS when sampling yielded fewer than 30 trees of a target species. For trees selected for coring in GIS, the direction of core sampling was determined by randomly assigning trees to one of the four cardinal directions prior to collection. Increment coring of leaning trees, which were rare in species other than *T. occidentalis* and *T. americana*, was performed at the slope distance equivalent of breast height.

Sample preparation

We prepared increment cores for analysis by drying, mounting, and progressively sanding to a fineness of up to 1500 grit (Speer 2010). We scanned the prepared cores on an Epson V600 flatbed scanner to a resolution of 945 dots·cm−2 and measured annual ringwidths using Cybis CooRecorder image analysis software (version 7.8, Cybis Electronik, Stockholm, Sweden). We cross-dated *F. nigra* cores using the marker-year method (Speer 2010). Notably narrow *Praxinus nigra* tree rings served as marker years across all sites and corresponded with droughts (e.g., 1911, 1931, 1976–1977, and 1987–1988), as indicated by the Palmer drought severity index (National Oceanic and Atmospheric Administration (NOAA) 2015). We further verified cross-dating using the COFECHA program (Holmes 1983) and calculated interseries correlations based on 32-year spline-detrended ring-width series. For increment cores with missing pits, we estimated distance and age to pit using the Applequist pit locator method (Applequist 1958), as implemented in CooRecorder 7.8 (Larsson 2014). Pith was not estimable for a percentage of increment cores due to lack of ring curvature or extensive rot (Table 3).

We calculated annual basal area increments (BAI) inward from the most recent year of growth using a regional bark thickness equation (Dixon and Keyser 2008) to estimate inside-bark radius. We used the dplR (Bunn 2008) package for R to calculate BAI. Because our focus was on the *F. nigra* growth response to competition, associated tree species were excluded from tree-ring analysis.

Statistical analysis

Growth and competition

To help characterize the nature of inter- and intra-specific *F. nigra* competition along the waterlogging stress gradient, we selected both distance-independent and distance-dependent neighborhood competition indices (Larocque et al. 2013). Because we were particularly interested in whether competition symmetry varied along the gradient, we chose competition indices ranging from size-symmetric to highly size-asymmetric. Size-symmetric indices consider the absolute size of the competitor trees and assume that growth responds proportionally, as with competition for soil resources (Larocque et al. 2013). Size-asymmetric indices consider the size of competitor trees relative to target tree size and assume that larger trees disproportionately influence growth of smaller trees, as with competition for light (Larocque et al. 2013). We tested three distance-independent indices, CI-1, CI-2, and CI-3 (Table 2). CI-1 is the sum of neighbor stem diameters within a given radius and models competition as size-symmetric. CI-2 divides individual neighbor diameter by the diameter of the target tree and models competition as size-asymmetric. CI-3 squares the size ratio of CI-2 and, thus, models competition as more highly size-asymmetric. CI-1 and CI-3 were adapted from indices numbered CI-4 and CI-6, respectively, in Rouvinen and Kuuluvainen (1997), while CI-2 corresponds with Lorimer’s (1983) index. We also tested distance-dependent versions of these indices, CI-4, CI-5, and CI-6, in which the ratio of tree sizes is divided by the intertree distance (Table 2), thereby downweighting neighbors according to distance. CI-4 models competition as size-symmetric, CI-5 as size asymmetric, and CI-6 as more highly size-asymmetric. CI-4 and CI-6 were adapted from distance-dependent indices numbered CI-9 and CI-12, respectively, in Rouvinen and Kuuluvainen (1997), while CI-5 corresponds to Hegyi’s (1974) index.

We modeled the effects of competition on *F. nigra* growth using linear modeling. We used 20-year average BAI (1994–2013) as the response variable, based on the results of previous studies that found this window to be most effective in eliminating the short-term variability in growth that may be associated with climate and stand dynamics (Aakala et al. 2013). We did not examine longer periodic averages, as ingrowth and mortality would have created increasing disparities between present (2014) tree neighborhoods and past conditions. We developed a set of candidate growth models ranging from bivariate to multivariate, which included the main effects of neighborhood CI, target *F. nigra* DBH,
and a nominal site variable. Neighborhood CI was our main explanatory variable of interest. Target *F. nigra* DBH was included to control for size-related variation in *F. nigra* growth, while a nominal site variable was included to examine *F. nigra* BAI across the waterlogging gradient. In addition to these three main effects, we also examined the DBH × CI, DBH × site, and CI × site interactions, as previous research suggests that these interactions may influence the growth of *F. nigra* as much or more than the main effects of neighborhood CI or target *F. nigra* DBH (Looney et al. 2016). We included a target *F. nigra* DBH-only null model to assess whether tree size and spatial autocorrelation alone provided a plausible explanation for observed growth patterns.

We used the information-theoretic approach to evaluate the strength of evidence for each model using corrected Akaike’s information criterion (AICc; Burnham and Anderson 2002) rather than using stepwise selection methods. To simplify the analysis and avoid model overfitting given the limited number of sites, models did not simultaneously contain both the DBH × site and CI × site interactions. Given the large number of candidate models, we did not present models with limited AICc support (ΔAICc > 7; Burnham and Anderson 2002). We used a significance level of α = 0.05 for all growth-competition models but restricted the use of significance testing to description rather than inference. To meet model assumptions, BAI was log-transformed. We also applied log transformations to DBH and CI to meet the assumption of constant variance. After applying the transformations, we converted BAI, DBH, and CI to Z scores to compare the effects of predictors on a common scale. Multicollinearity, as indicated by variance inflation factors (VIF), was low to moderate for all models with substantial support (VIF < 5) and did not exceed tolerable levels (VIF < 10; Quinn and Keough 2003) for any model.

Adjacent trees may show similar growth as a result of shared disturbance histories or microsite characteristics, so we controlled for this by fitting an exponential variogram to each model to model spatial autocorrelation (Aakala et al. 2013). We confirmed that this autocorrelation structure was appropriate through AICc comparisons with alternative structures and by examining semi-variogram plots. We used generalized least-squares modeling in the nlme package for R (Pinheiro et al. 2016), offsetting coordinates by site geographic location to stratify autocorrelation estimates. We used the lsmeans package (Lenth 2016) to investigate interaction effects where present.

We used mapped tree coordinates to define fixed-radius neighborhoods around each target tree sampled for competition analysis. We selected neighborhood size by evaluating the relative performance of the candidate models at neighborhood radii ranging from 5 to 10 m at 1 m intervals, with the top-performing models assumed to include the radii most appropriate for assessing competition in our heterogeneous stands (Fraver et al. 2014). Top model fit as indicated by ΔAICc was achieved at the 5 m radius, with model fit consistently poorer in neighborhoods with radii larger than 5 m (data not shown). Neighborhoods with radii smaller than 5 m were not investigated because preliminary analysis found that they contained target trees with no competitors. The mean number of competing trees in the 5 m radius neighborhoods ranged from 5.0 ± 0.3 at Pigeon Lake to 8.1 ± 0.3 at Virgin Lake, indicating that the 5 m radius was well adjusted to the mean tree size and density of forests in the study area as recommended by Lorimer (1983).

Tree neighborhoods were defined using buffering and intersection operations in QGIS. Within neighborhoods, we calculated six competition indices (CI; detailed below) for each target tree. We did not exclude sampled trees from plot edges, as this would have greatly reduced the number of trees available for study. Instead, we used the linear expansion method to correct for edge bias (Martin et al. 1977), dividing the total measured CI of each edge tree by the proportion of its neighborhood falling within the stem map. For example, a target tree on a plot corner would have 25% of its neighborhood falling within the plot, with the adjustment equal to the sum of measured CI/0.25.

Tree spatial relationships

We examined the spatial relationships of *F. nigra* and associated tree species to determine whether *F. nigra* competition at each site was predominantly inter- or intra-specific. In preliminary quadrant tests of complete spatial randomness (Baddeley et al. 2015), *F. nigra* spatial distributions showed significant deviation from homogeneity (or stationarity) at most sites. Therefore, for each site, we constructed candidate sets of *F. nigra* in homogeneous point pattern models, which permit generalized linear modeling of nonstationary Poisson point patterns (Baddeley and Turner 2000). Modeling the intensity (in our study, local *F. nigra* density) of the response point pattern as a log-linear function of spatial covariates or marked factors allowed us to evaluate the influence on spatial point patterns of multiple covariates, in this case, the density of more than one competing species, alongside alternatives in a multimodel framework (Wiegand and Moloney 2013). Intraspecific interactions among *F. nigra* can be examined through the residual Ripley’s K(t) function. This function indicates whether the fitted model deviates from complete spatial randomness, which should not be the case if the points are independent Poisson and the fitted model is valid (Baddeley et al. 2015). In the event that *F. nigra* spatial point patterns displayed intraspecific clustering or dispersion, we modeled these intraspecific interactions using an area-interaction term to account for stochastic clustering between points (Baddeley et al. 2015). Residual *F. nigra* clustering suggests higher intensity of intraspecific competition (Fraver et al. 2014). We used maximum pseudo-likelihood to achieve model fit (Baddeley and Turner 2000), which permitted the use of AICc for multimodel inference. The null hypothesis was that the density of the response *F. nigra* point pattern did not vary with respect to associated species density.

Within each site, we examined relationships between the density of common (≥100 trees·ha−1) associated tree species and the spatial distribution of *F. nigra* (Table 1; Fig. 2). Because a prerequisite of point pattern analysis is that the local density of spatial covariates must be estimated at each point of the response pattern (Baddeley et al. 2015), we estimated local density of each major associated species through kernel smoothing using a 5 m bandwidth corresponding with growth model CI neighborhood radii. We used Diggle’s (2010) method for edge correction. Partial residual plots suggested log-quadratic interspecific relationships were potentially present; therefore, we included quadratic polynomial terms of spatial covariates in our analyses. We did not investigate higher order polynomial terms as these were difficult to justify ecologically and may have resulted in overfitting. We also fitted an intercept-only null hypothesis model for each site, in which *F. nigra* density was modeled as a stationary process. We evaluated point pattern models in terms of AICc using the information-theoretic approach, as per growth modeling (Burnham and Anderson 2002).

We used four-panel diagnostic residual plots to evaluate models and partial residual plots to better examine relationships between *F. nigra* density and density of associated tree species (Baddeley et al. 2015). In the event that the residual K(t) function indicated intraspecific spatial interactions among *F. nigra*, we determined optimal disc radius for the area interaction term at each site using profile AIC to find the radius minimizing AIC (Baddeley et al. 2015). We performed Poisson point pattern modeling (ppm) and diagnostics using the spatstat package for R (Baddeley and Turner 2005).
Fig. 2. Mapped locations of live trees ≥10 cm DBH of major species for six study sites. Plots are oriented so that the y axis broadly follows the major gradient of within-site moisture, with waterlogging decreasing with increasing y coordinates. Major species defined as having ≥100 trees·ha⁻¹. Species abbreviations: ACSA, Acer saccharum; BEAL, Betula alleghaniensis; FRNI, Fraxinus nigra; FRPE, Fraxinus pennsylvanica; POTR, Populus tremuloides; TIAM, Tilia americana; Other spp, pooled minor species.
Results

Growth and competition

Over the 1994–2013 period, mean *F. nigra* basal area increment (BAI) ranged from 8.1 ± 1.3 cm²·year⁻¹ for 26 trees at Pigeon Lake to 3.6 ± 0.4 cm²·year⁻¹ for 39 trees at Kupcho Run (Table 3). The best-supported BAI growth model for *F. nigra* across the waterlogging gradient included the main effects of DBH, highly size-asymmetric, distance-dependent CI-6, and site, as well as the interaction between CI-6 and site (Supplementary Table S1). The second most supported model was equivalent to the first, with the addition of the DBH × CI interaction term (ΔAICc = 0.9). The third model with substantial AICc support (ΔAICc = 1.1) was equivalent to the first but used the highly size-asymmetric, distance-independent CI-3. The fourth-ranked model (ΔAICc = 2.2) also used CI-3 but added the DBH × CI interaction. Less supported models used the size-asymmetric, distance-independent CI-2 (ΔAICc = 4.1) and the size-asymmetric, distance-dependent CI-5 (ΔAICc = 6.0). All other models had minimal support, including the null DBH-only model (ΔAICc > 7).

Based on the best-supported model, increasing competition appeared to have the most negative effect on *F. nigra* BAI at Wilderness Lake, followed by Round Lake (Fig. 3). Competition had a weak effect at Third River and Virgin Lake and no discernable effect at Kupcho Run or Pigeon Lake (Fig. 3). However, when modeling the growth of *F. nigra* at the study-wide mean of CI, mean *F. nigra* BAI did not appear to vary significantly by site (Fig. 3). Tree diameter had a stronger influence on BAI than CI or site, with growth increasing with tree size. Models including the DBH × CI term indicated a weakly positive, nonsignificant interaction effect such that large trees were slightly less responsive to competition than small trees.

Spatial point pattern models

We found support for spatial point pattern models of *F. nigra* density as a function of the density of associated species at all sites except Wilderness Lake (Supplementary Table S2). Based on residual K(i) diagnostics, we found evidence of significant spatial clustering of *F. nigra* at Wilderness Lake, which we modeled using an area-interaction term. Once we accounted for residual intraspecific clustering, Wilderness Lake models including *A. saccharum* and *T. americana* density terms did not improve AICc over the model containing only the *F. nigra* area interaction term, indicating that the density of *F. nigra* did not vary spatially with the density of *A. saccharum* and *T. americana* (i.e., *F. nigra* occurred in mixtures with these species, irrespective of interspecific density).

In the best-supported model for Round Lake, density of *F. nigra* varied log-quadratically with density of *P. tremuloides*, indicating that *F. nigra* density slightly increased at low to moderate *P. tremuloides* densities but declined at higher *P. tremuloides* densities (Fig. 4). At Kupcho Run, the best-supported model similarly showed a log-quadratic relationship between *F. nigra* density and *P. tremuloides* density, with *F. nigra* density increasing slightly at low to moderate *P. tremuloides* densities and decreasing at higher *P. tremuloides* densities. A substantially supported competing model (ΔAICc = 0.73) at Kupcho Run additionally included a negative log-linear effect of *F. pennsylvanica* density, indicating that *F. nigra* density declined in association with *F. pennsylvanica* density.

At Pigeon Lake, we found greatest support for a model describing *F. nigra* density as a negative log-linear function of *T. occidentalis* density, indicating that *F. nigra* density declined with increasing *T. occidentalis* density (Fig. 4). The null, stationary model for Pigeon Lake also had high support (ΔAICc = 0.6). At the Virgin Lake site, there was high support for a log-linear decrease in *F. nigra* density with increased density of *T. occidentalis*. Density of *F. nigra* declined more steeply with increasing *T. occidentalis* density at Virgin Lake than at Pigeon Lake. We also found substantial support for a log-quadratic relationship (ΔAICc = 1.5) between *F. nigra* density and *T. occidentalis* density.

Discussion

In temperate forests, growth of a given tree species generally increases with site moisture in the absence of competition (Canham et al. 2006) but diminishes as the duration of waterlogging stress from soil saturation increases (Megenigal et al. 1997). In our growth modeling, we found that *F. nigra* BAI did not significantly differ with site moisture conditions, when controlling for the influences of tree size and competition. It should be noted, however, that because no stand histories were available for our sites, we were unable to distinguish seed-origin trees from sprout-origin trees, which typically grow more rapidly and follow major disturbances (Tardif and Bergeron 1999). Although mean *F. nigra* growth did not vary by moisture condition, the influence of competition decreased from sites with low to moderate waterlogging stress to unimportant on sites with high waterlogging stress, a finding that will be discussed in depth for the individual sites below.

Tree competition is theorized to shift from size-asymmetric for light to size-symmetric for soil resources with increasing stress (Coomes and Grubb 2000), a pattern that has been confirmed for upland forests (Coomes and Allen 2007). At our wetland forest sites, however, multimodel comparisons revealed greatest support for highly size-asymmetric CI-6 across the gradient of waterlogging stress. Not only was support lacking for *F. nigra* models using less asymmetric CI, but the best-supported models that incorporated less asymmetric CI such as CI-5 showed equivalent patterns of tree response to competition across sites (data not

Table 3. Selected characteristics of *Fraxinus nigra* tree-ring series by site, as used in basal area increment (BAI) models.

<table>
<thead>
<tr>
<th>Site</th>
<th>No. of trees cored</th>
<th>DBH (cm)</th>
<th>BAI (cm²·year⁻¹)</th>
<th>Mean age (years)</th>
<th>Age range (years)</th>
<th>Missing age (%)</th>
<th>Interseries correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilderness Lake</td>
<td>27</td>
<td>20.5±1.1</td>
<td>6.4±0.8</td>
<td>65.7±4.1</td>
<td>26–84</td>
<td>11</td>
<td>0.42</td>
</tr>
<tr>
<td>Round Lake</td>
<td>26</td>
<td>20.3±1.4</td>
<td>7.3±1.0</td>
<td>90.2±2.9</td>
<td>35–121</td>
<td>23</td>
<td>0.51</td>
</tr>
<tr>
<td>Third River</td>
<td>33</td>
<td>17.2±1.4</td>
<td>5.1±1.0</td>
<td>73.5±3.4</td>
<td>24–116</td>
<td>3</td>
<td>0.44</td>
</tr>
<tr>
<td>Kupcho Run</td>
<td>39</td>
<td>16.7±1.2</td>
<td>3.7±0.5</td>
<td>68.0±2.3</td>
<td>28–106</td>
<td>16</td>
<td>0.59</td>
</tr>
<tr>
<td>Pigeon Lake</td>
<td>26</td>
<td>28.6±2.2</td>
<td>8.1±1.5</td>
<td>115.2±6.9</td>
<td>48–170</td>
<td>37</td>
<td>0.46</td>
</tr>
<tr>
<td>Virgin Lake</td>
<td>30</td>
<td>22.0±1.5</td>
<td>7.5±0.7</td>
<td>85.5±3.4</td>
<td>35–144</td>
<td>11</td>
<td>0.49</td>
</tr>
</tbody>
</table>

*Note: DBH, diameter at breast height; BAI, basal area increment. Means ± standard errors are provided for DBH and BAI.

*Percent of *F. nigra* for which age to pith could not be determined.

†The mean correlation of an individual-tree ring series with the master chronology.

Published by NRC Research Press
shown). This finding suggests that *F. nigra* competes predominantly for light across the waterlogging stress gradient (LaRocque et al. 2013). We found greater evidence of size asymmetry at our mixed-species sites than in a previous study of tree–tree interactions in nearly pure, multi-age stands at the center of *F. nigra*’s moisture niche (Looney et al. 2016). Our study sites were generally younger than those in the earlier study (Looney et al. 2016), and size-asymmetric competition is hypothesized to be more important under the higher leaf areas of young stands (Binkley et al. 2006). In British Columbia, Canada, a study of tree species along a soil fertility gradient found that although resource limitation influences competition symmetry, the response is species-specific and may be contingent on the species composition of competitor trees (Coates et al. 2013).

Variation in species composition, rather than in competition symmetry, may better account for differences in the *F. nigra* BAI response to competition along the waterlogging stress gradient. At the driest site, Wilderness Lake, where growth in BAI showed a strong negative response to competition, *F. nigra* spatial patterns displayed residual clustering, suggesting increased intensity of infraspecific competition compared with other sites (Fraver et al. 2014). At the same time, we found evidence that *F. nigra* was spatially integrated with the associated species *T. americana* and *A. saccharum*. Taken together, the two results are consistent with the inferred findings of previous studies that competition from upland tree species may confine waterlogging-tolerant species such as *F. nigra* to more hydric sites (Denneler et al. 2000; Smith et al. 2013). Once established in stands, *A. saccharum*, a co-dominant tree species at Wilderness Lake, is noted for excluding neighboring species through a combination of high light interception and shade-tolerant seedlings (Frelich 2002). Alternatively, the occurrence of adult *F. nigra* alongside shade-tolerant competitors, despite our finding of reduced *F. nigra* growth in response to competition, could suggest that competition with mesic upland species may reduce *F. nigra* growth without necessarily resulting in *F. nigra* mortality and competitive exclusion.

At Round Lake, the *F. nigra* BAI responded negatively to competition, but the response was less strong than at Wilderness Lake, despite similarity of species composition between the two sites. Spatial analysis indicated that *F. nigra* at Round Lake grew in association with *F. pennsylvanica*, with which it frequently co-occurs (MNDNR 2003). This finding suggests that *F. nigra* was concentrated on more heavily inundated microsites, and in fact, we observed that *F. nigra* at this site was concentrated within vernal pools that persisted into early July. This spatial arrangement limited *F. nigra*’s interaction with less moisture tolerant *A. saccharum* and *T. americana*. As a result, the slightly weaker negative response of *F. nigra* BAI to competition at Round Lake compared with Wilderness Lake appears to reflect predominantly intrageneric competition, the intensity of which can be dramatically altered by differences in species traits such as leaf area and phenology (Forrester and Pretzsch 2015). Both *F. nigra* and *F. pennsylvanica* have among the most limited leaf-on periods of northern Minnesota tree species (Ahlgren 1957), and nearly pure stands of *F. nigra* have notably low leaf area (Looney et al. 2017). In contrast, *Acer* spp. are noted for both longer leaf-on periods (Ahlgren 1957) and stand leaf areas (Kassnacht and Gower 1997), subjecting moderately shade-tolerant *F. nigra* to heavy shade throughout its grow-

![Interaction plot illustrating the varying effects of competition on Fraxinus nigra growth (basal area increment, BAI) at six study sites in Minnesota, USA, based on the best-supported model, which used competition index 6 (CI-6). The y axis represents least-squares mean estimates of BAI (Z scores ± standard errors). The x axis shows study sites, arranged from left to right according to inferred waterlogging stress from most mesic (Wilderness Lake, top left) to wettest (Virgin Lake). To graphically interpret the interaction between CI and the study site, the continuous CI is set at three contrasting levels, with BAI modeled at study-wide high (1.5), mean (0), and low (−1.5) values within the range of the data at each site.](image-url)
whose growth appears to be limited by early growing season providing more reliable summer soil moisture for Cape more severe waterlogging stress, while simultaneously Lake and a very weak negative response at Virgin Lake, where the two species may co-occur in transitional areas with more upland and shade-tolerant species. At both sites, we also noted that *T. occidentalis* was predominantly confined to intermediate and suppressed crown classes (C.E. Looney, unpublished data). Light partitioning between *F. nigra* and shorter statured *T. occidentalis* could potentially reduce interspecific competition impacts on *F. nigra* BAI (Forrester and Pretzsch 2015). The low responsiveness of *F. nigra* growth to competition at these sites may also reflect faster tree growth on more optimal microsites, a phenomenon reported in other wetland forest systems (MacDonald and Yin 1999).

In conclusion, it should be noted that our study represents only a preliminary investigation into the process of competition in six stands within one *F. nigra* forest system. As such, additional research is needed to more fully describe the competition dynamics of *F. nigra* forests. In particular, the growth-competition response of *F. nigra* associated tree species should be examined, as well as the longer-term impacts of competition on forest tree community composition, to better predict how associated species along the gradient will respond to canopy gaps created by EAB invasion. Furthermore, our analysis was limited to static assessments of conditions during the most recent 20 years and did not examine the potential influence of disturbance on tree growth and spatial distributions. Detailed reconstructions of stand history could be especially useful in elucidating longer term stand dynamics, including succession, while clarifying the extent to which the spatial distribution of *F. nigra* in relation to *P. tremuloides* and *T. occidentalis* reflects past competitive exclusion (Connell 1980) or the effects of past disturbance (Stadt et al. 2007).

Acknowledgements

Funding was provided by the Minnesota Environment and Natural Resources Trust Fund, the U.S. Department of Agriculture Forest Service Northern Research Station, the U.S. Department of Interior Northeast Climate Adaption Science Center, and the University of Minnesota Doctoral Dissertation Fellowship. We especially thank the Chippewa National Forest for providing logistical support and Madeline Sarcone for assisting with field data collection. We are grateful to the Associate Editor and several reviewers who provided constructive comments on multiple versions of this paper that greatly improved its quality.

References

Acknowledgements

Funding was provided by the Minnesota Environment and Natural Resources Trust Fund, the U.S. Department of Agriculture Forest Service Northern Research Station, the U.S. Department of Interior Northeast Climate Adaption Science Center, and the University of Minnesota Doctoral Dissertation Fellowship. We especially thank the Chippewa National Forest for providing logistical support and Madeline Sarcone for assisting with field data collection. We are grateful to the Associate Editor and several reviewers who provided constructive comments on multiple versions of this paper that greatly improved its quality.

References

