PSYCHOLOGY 346
ANALYSIS OF LONGITUDINAL DATA

Dewey Hall Room 238 (and Room 128)
Thursdays 8:30am-11:15am and selected Mondays (see below)
3 credits

Instructor:

Keith Burt, Ph.D.
Dewey Hall Room 340
Keith.Burt@uvm.edu
Office phone: 656-4285
Office Hours: Tuesdays 11am-12pm and by appointment

GENERAL INFORMATION
Course Website / Contacting: http://bb.uvm.edu/. Handouts, course announcements, Web links, and other important information will be posted on the website. You should familiarize yourself with the Psyc346 Blackboard page and check it frequently for important updates. Email is the best way to reach me, and I generally respond to emails within 24-48 hours. Please use regular email rather than the Blackboard email feature.

Course Overview and Objectives

The primary aim of this course is to introduce tools for the analysis of data gathered on the same individuals over time, with a special focus on linear mixed models (LMMs). Traditional methods, such as the dependent t-test and repeated-measures ANOVA and MANOVA, will be discussed as special cases of LMMs. Discussions of treatment of missing data as well as some computational foundations of mixed models, such as maximum likelihood estimation and matrix algebra representations of mixed models, will be included.

Prerequisites for this course include completion of a one-year graduate-level course in multivariate statistics (e.g., PSYC340-341 or the equivalent). The lecture notes and course discussions are aimed at applied researchers with an intermediate statistical background, and for the most part lectures will emphasize conceptual and practical aspects of model-testing.

An important component of this course will be instruction in the free and open-source R software environment, especially the lme4 package (“linear mixed effects”) used to fit LMMs, as well as other selected packages including ggplot2 (“grammar of graphics plotting”), which is used to create a variety of different types of graphs. Although SPSS, Excel, and other programs may be used from time to time for data manipulation and some statistical analyses, the bulk of the analytic work in this course will be conducted in R, and explicit instruction in R and the RStudio interface will be an integral part of the course. Although prior experience in R is not expected, students will be expected to make use of free online and printed resources on basic-to-intermediate R techniques to expand their comfort and familiarity with the software.
Textbooks (Required)

We will work through most of Long (2012) and approximately the first half of Singer and Willett (2003) throughout the semester. Additional readings, both journal articles as well as chapters of other books, will be used to supplement the material from both textbooks. These readings will generally be drawn from the “Supplemental Readings” listed at the end of this syllabus.

Advanced Reference Texts (Not required, but may be of interest)

COURSE EVALUATION AND ASSIGNMENTS

Your course grade will be expressed as a percentage of 200 total possible points. This is divided into two major components, lab exercises (100 points total, 50% of final course grade) and the final project (100 points, 50% of final course grade).

Lab exercises: there will be four lab exercises to complete throughout the semester, each worth 25 points. Lab exercises will involve hands-on practice of many topics discussed and demonstrated in class, as well as conceptual and analytic questions about the different steps of analysis. Write-ups for lab exercises will typically be handed in as R code and associated output, interspersed with your commentary as well as any relevant graphs/plots.

Final project: the final project will be worth 100 points, and will represent a complete LMM analysis of a substantive research question in your designated research area. For this project, you are encouraged to use a dataset that you have access to and that is relevant to your own work; however, if you do not have access to appropriate data, the instructor will assist you in finding a publicly available dataset or will provide a dataset to analyze. More information about the structure and format of the final project will be provided in class. Your final project will be evaluated based on the thoroughness and appropriateness of your analyses rather than the statistical significance of your findings.
CLASS SCHEDULE (NOTE: may be subject to rather extensive change throughout the semester!!)

<table>
<thead>
<tr>
<th>Date</th>
<th>Class</th>
<th>Topic</th>
<th>Reading*</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/28</td>
<td>1</td>
<td>Course intro; R/RStudio/RMarkdown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/4</td>
<td>2</td>
<td>Matrix algebra; Data structures</td>
<td>“Introduction to R” (Bb), ch. 1, 2, Appendix A; Long ch. 1, 2, 3.1-3.6</td>
<td></td>
</tr>
<tr>
<td>9/8</td>
<td>3</td>
<td>Linear unconditional models; model diagnostics; graphing</td>
<td>S&W ch. 1-3 (skim); Long ch. 4 and 5</td>
<td></td>
</tr>
<tr>
<td>9/11</td>
<td>4</td>
<td>Unconditional models continued</td>
<td>S&W ch. 4; Long 6.1-6.2</td>
<td>Lab 1 due 9/15 @ 4pm</td>
</tr>
<tr>
<td>9/18</td>
<td>5</td>
<td>Inference / maximum likelihood estimation</td>
<td>Long ch. 7-8</td>
<td></td>
</tr>
<tr>
<td>9/22</td>
<td>6</td>
<td>Selecting time predictors / R-squared</td>
<td>Long ch. 9</td>
<td></td>
</tr>
<tr>
<td>9/28</td>
<td>7</td>
<td>Static covariates</td>
<td>Long, 11.1-11.4</td>
<td></td>
</tr>
<tr>
<td>10/2</td>
<td>8</td>
<td>Covariance structures / random effects</td>
<td>Long ch. 10; S&W ch. 7</td>
<td>Lab 2</td>
</tr>
<tr>
<td>10/6</td>
<td>9</td>
<td>Quadratic change / piecewise models</td>
<td>Long 12.1-12.3, 12.7-12.8; S&W ch. 6</td>
<td>Lab 3</td>
</tr>
<tr>
<td>10/9</td>
<td>10</td>
<td>Effect size / Dynamic covariates</td>
<td>Long 11.4, ch. 13; S&W ch. 5</td>
<td></td>
</tr>
<tr>
<td>10/16</td>
<td>11</td>
<td>Non-normal response models (GLMMs)</td>
<td>TBA</td>
<td>Lab 4</td>
</tr>
</tbody>
</table>

Final projects due Mon. Dec. 8 @ 4pm

*Readings to be completed before the listed class. Other readings will be required throughout the semester; these will be made available on Blackboard, by sign-out, or will be easily obtainable through the UVM library system. See below for a partial supplemental readings list.

Supplemental Readings (may be added to throughout the semester)

