Density Functional Theory Study of CuPc Chains Diluted with H₂Pc

Organometallic (OM) crystals are studied in fields ranging from spintronics to photovoltaics. This thesis focuses on studying a particular class of OM crystals known as transition metal-phthalocyanines (TM-Pc) - a molecular crystal composed of chains of planar OM molecules with a transition metal center and four coordinated pyrrole-aromatic rings joined by nitrogen atoms, similar to porphyrin. The structure resembles a dish rack pattern where the planar TM-Pcs of adjacent chains are oriented nearly perpendicular to each other. While TM-Pcs have been studied for decades due to their interesting optical properties and applications as dyes, there has been recent interest in understanding the magnetic properties with various transition metals.

Due to crystal arrangement, inter-chain interactions among TM-Pcs are relatively weak when compared to intra-chain interactions. This property allows the chains of TM-Pcs to be isolated and approximated as a pseudo 1D system. The electronic structure and spin exchange are computationally examined along chains of CuPc when they have been diluted with the metal-free variant, H₂Pc. Density functional theory is employed with the Hubbard U correction to account for electron interactions on the copper d-orbitals. Since the diluted systems are effectively 1D with narrow bands along their stacking axis, a 1D Heisenberg model is applied where the exchange coefficient is determined through the Broken Symmetry method. Additionally, the effect of non-local corrections, used to determine structural features, on the Hubbard U and Heisenberg exchange coefficient, J, are discussed.

(Refreshments will be available at 12:30 PM)