Random Networks

Last updated: 2023/08/22, 11:48:23 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2023-2024 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

The PoCSverse Random Networks 1 of 81

Pure random networks

How to build theoretically

Degree distributions

Generalized Networks

Configuration model How to build in practice

Random friends are

These slides are brought to you by:

The PoCSverse Random Networks 2 of 81

Pure random networks

Definitions

How to build theoretically

Clustering
Degree distributions

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

Largest compone

These slides are also brought to you by:

Special Guest Executive Producer



☑ On Instagram at pratchett_the_cat

The PoCSverse Random Networks 3 of 81

Pure random networks

Definitions

How to build theoretically Some visual examples

Degree distributions

Generalized Random Networks

Configuration model
How to build in practice
Motifs
Random friends are

strange Largest component

Outline

Pure random networks

Definitions How to build theoretically Some visual examples Clustering Degree distributions

Generalized Random Networks

Configuration model How to build in practice Motifs Random friends are strange Largest component

References

The PoCSverse Random Networks 4 of 81

Pure random networks

How to build theoretically

Degree distributions

Generalized Random Networks

Configuration model How to build in practice

Random friends are

Models

Some important models:

- 1. Generalized random networks:
- 2. Small-world networks:
- 3. Generalized affiliation networks:
- 4. Scale-free networks;
- 5. Statistical generative models (p^*).

The PoCSverse Random Networks 5 of 81

Pure random networks

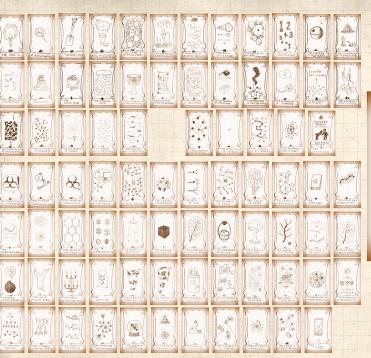
How to build theoretically

Degree distributions

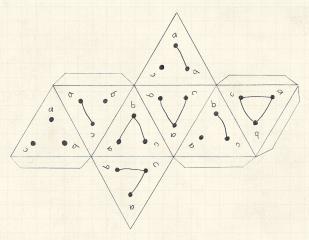
Generalized Random Networks

Configuration model How to build in practice

Random friends are



Random network generator for N=3:



Get your own exciting generator here .

 \mathbb{A} As $N \nearrow$, polyhedral die rapidly becomes a ball...

The PoCSverse Random Networks 7 of 81

Pure random networks

Definitions

How to build theoretically

Degree distributions

Generalized Random Networks

Configuration model How to build in practice

Random friends are

Random networks

Pure, abstract random networks:

- $\ensuremath{ \ \ }$ Consider set of all networks with N labelled nodes and m edges.
- Standard random network = one randomly chosen network from this set.
- To be clear: each network is equally probable.
- Sometimes equiprobability is a good assumption, but it is always an assumption.
- Known as Erdős-Rényi random networks or ER graphs.

The PoCSverse Random Networks 9 of 81

Pure random networks Definitions How to build theoretically

Some visual examples
Clustering
Degree distributions

6

Generalized Random Networks

Configuration model

How to build in practice

Motifs

Random friends are strange

Random networks—basic features:

Number of possible edges:

$$0 \leq m \leq \binom{N}{2} = \frac{N(N-1)}{2}$$

- \clubsuit Limit of m=0: empty graph.
- \mathbb{A} Limit of $m = \binom{N}{2}$: complete or fully-connected graph.
- \mathbb{A} Number of possible networks with N labelled nodes:

$$2^{\binom{N}{2}} \sim e^{\frac{\textstyle | \mathbf{n}_2|}{2} N(N-1)}.$$

- \Re Given m edges, there are $\binom{\binom{N}{2}}{m}$ different possible networks.
- \mathfrak{S} Crazy factorial explosion for $1 \ll m \ll \binom{N}{2}$.
- Real world: links are usually costly so real networks are almost always sparse.

The PoCSverse Random Networks 10 of 81

Pure random networks Definitions

How to build theoretically Degree distributions

Generalized Networks

Configuration model How to build in practice Random friends are

Random networks

How to build standard random networks:

- \mathbb{A} Given N and m.
- Two probablistic methods (we'll see a third later on)
 - 1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability p.
 - Useful for theoretical work.
 - 2. Take N nodes and add exactly m links by selecting edges without replacement.
 - Algorithm: Randomly choose a pair of nodes i and $i, i \neq j$, and connect if unconnected; repeat until all m edges are allocated.
 - Best for adding relatively small numbers of links (most cases).
 - \bigcirc 1 and 2 are effectively equivalent for large N.

The PoCSverse Random Networks 12 of 81

Pure random networks

How to build theoretically

Degree distributions

Generalized

Networks

How to build in practice Random friends are

Random networks

A few more things:

For method 1, # links is probablistic:

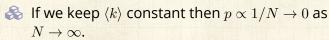
$$\langle m \rangle = p \binom{N}{2} = p \frac{1}{2} N (N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$=\frac{2}{N}p\frac{1}{2}N(N-1)=\frac{2}{\mathcal{N}}p\frac{1}{2}\mathcal{N}(N-1)=p(N-1).$$

Which is what it should be...



The PoCSverse Random Networks 13 of 81

Pure random networks

How to build theoretically

Degree distributions

Generalized Networks

Configuration model How to build in practice

Random friends are

Random networks: examples

Next slides:

Example realizations of random networks

 \aleph Vary m, the number of edges from 100 to 1000.

 \clubsuit Average degree $\langle k \rangle$ runs from 0.4 to 4.

Look at full network plus the largest component.

The PoCSverse Random Networks 15 of 81

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

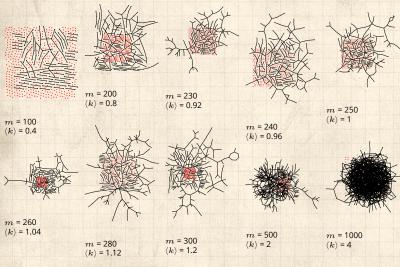
Degree distributions

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

Random networks: examples for N=500



The PoCSverse Random Networks 16 of 81

Pure random

networks Definitions

How to build theoretically Some visual examples Clustering

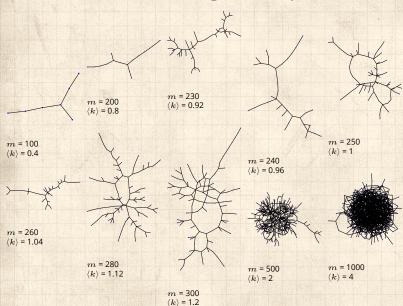
Degree distributions

Generalized Random Networks

Configuration model How to build in practice Motifs

Random friends are

Random networks: largest components



The PoCSverse Random Networks 17 of 81

Pure random networks

Definitions How to build theoretically Some visual examples

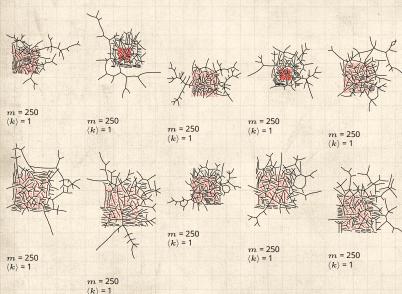
Clustering Degree distributions

Generalized

Random Networks

Configuration model How to build in practice Motifs Random friends are

Random networks: examples for N=500



The PoCSverse Random Networks 18 of 81

Pure random networks

Definitions

How to build theoretically Some visual examples Clustering

Degree distributions

Generalized Random Networks

Configuration model How to build in practice Motifs

Random friends are

Random networks: largest components

m = 250

 $\langle k \rangle = 1$

$$m$$
 = 250 $\langle k \rangle$ = 1

m = 250 $\langle k \rangle = 1$

$$m$$
 = 250 $\langle k \rangle$ = 1

m = 250 $\langle k \rangle = 1$

$$m$$
 = 250 $\langle k \rangle$ = 1

m = 250

 $\langle k \rangle = 1$

The PoCSverse Random Networks 19 of 81

Pure random networks Definitions

How to build theoretically Some visual examples Clustering

Degree distributions

Generalized Random

Networks Configuration model How to build in practice

Motifs Random friends are

References

m = 250 $\langle k \rangle = 1$

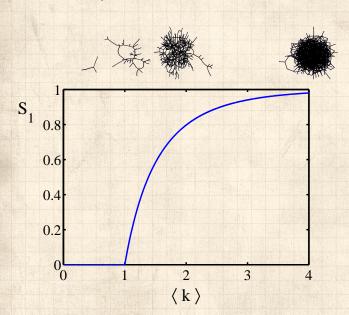
m = 250 $\langle k \rangle = 1$

m = 250/1/ - 1

m = 250

 $\langle k \rangle = 1$

Giant component



The PoCSverse Random Networks 20 of 81

Pure random networks

Definitions

How to build theoretically Some visual examples

Clustering
Degree distributions

Generalized Random Networks

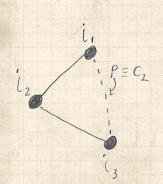
Configuration model How to build in practice Motifs

Random friends are strange

Clustering in random networks:

- For construction method 1, what is the clustering coefficient for a finite network?
- 🙈 Consider triangle/triple clustering coefficient: 🖂

$$C_2 = \frac{3 \times \text{\#triangles}}{\text{\#triples}}$$



- Recall: C_2 = probability that two friends of a node are also friends.
- Arr Or: C_2 = probability that a triple is part of a triangle.
- For standard random networks, we have simply that

$$C_2 = p$$
.

The PoCSverse Random Networks 22 of 81

Pure random networks Definitions

How to build theoretically Some visual examples

Clustering Degree distribution

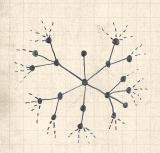
Generalized Random Networks

Configuration model
How to build in practice
Motifs
Random friends are

strange

Largest component

Clustering in random networks:



- So for large random networks $(N \to \infty)$, clustering drops to zero.
- Key structural feature of random networks is that they locally look like pure branching networks
- No small loops.

The PoCSverse Random Networks 23 of 81

Pure random networks

How to build theoretically

Clustering

Generalized Networks

Configuration model How to build in practice

Random friends are

Degree distribution:

- \mathbb{R} Recall P_k = probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.
- Now consider one node: there are 'N 1 choose k' ways the node can be connected to k of the other N-1 nodes.
- Each connection occurs with probability p, each non-connection with probability (1-p).
- Therefore have a binomial distribution :

$$P(k;p,N) = \binom{N-1}{k} p^k (1-p)^{N-1-k}.$$

The PoCSverse Random Networks 25 of 81

Pure random networks How to build theoretically

Degree distributions

Generalized Networks

Configuration model How to build in practice Random friends are

Limiting form of P(k; p, N):

- Our degree distribution: $P(k; p, N) = {\binom{N-1}{k}} p^k (1-p)^{N-1-k}.$
- \Longrightarrow What happens as $N \to \infty$?
- We must end up with the normal distribution right?
- with average degree $\langle k \rangle \simeq pN \to \infty$.
- \clubsuit But we want to keep $\langle k \rangle$ fixed...
- So examine limit of P(k; p, N) when <math><math>0 and $N \to \infty$ with $\langle k \rangle = p(N-1)$ = constant.

$$P(k;p,N) \simeq \frac{\langle k \rangle^k}{k!} \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k} \to \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

 \clubsuit This is a Poisson distribution \checkmark with mean $\langle k \rangle$.

The PoCSverse Random Networks 26 of 81

Pure random networks Definitions

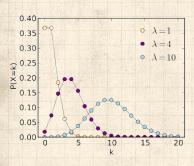
How to build theoretically

Degree distributions

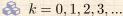
Generalized Networks

Configuration model How to build in practice Random friends are

$$P(k;\lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$$



 $\lambda > 0$



Classic use: probability that an event occurs k times in a given time period, given an average rate of occurrence.

e.g.: phone calls/minute, horse-kick deaths.

'Law of small numbers'

The PoCSverse Random Networks 27 of 81

Pure random networks

How to build theoretically

Degree distributions

Generalized Networks

Configuration model How to build in practice

Random friends are

Normalization: we must have

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = 1$$

Checking:

$$\begin{split} \sum_{k=0}^{\infty} P(k;\langle k \rangle) &= \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle} \\ &= e^{-\langle k \rangle} \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} \\ &= e^{-\langle k \rangle} e^{\langle k \rangle} = 1 \end{split}$$

The PoCSverse Random Networks 28 of 81

Pure random networks

How to build theoretically

Degree distributions

Generalized Random Networks

Configuration model How to build in practice

Random friends are

Mean degree: we must have

$$\langle k \rangle = \sum_{k=0}^{\infty} k P(k; \langle k \rangle).$$

Checking:

$$\begin{split} \sum_{k=0}^{\infty} k P(k;\langle k \rangle) &= \sum_{k=0}^{\infty} k \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle} \\ &= e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^k}{(k-1)!} \\ &= \frac{\langle k \rangle}{k!} e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^{k-1}}{(k-1)!} \\ &= \langle k \rangle e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^i}{i!} = \langle k \rangle e^{-\langle k \rangle} e^{\langle k \rangle} = \langle k \rangle \end{split}$$

In CocoNuTs, we find a different, crazier way of doing this...

The PoCSverse Random Networks 29 of 81

Pure random networks

How to build theoretically

Degree distributions

Generalized Networks

Configuration model How to build in practice

Random friends are

- The variance of degree distributions for random networks turns out to be very important.
- \clubsuit Using calculation similar to one for finding $\langle k \rangle$ we find the second moment to be:

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Variance is then

$$\sigma^2 = \langle k^2 \rangle - \langle k \rangle^2 = \langle k \rangle^2 + \langle k \rangle - \langle k \rangle^2 = \langle k \rangle.$$

- Note: This is a special property of Poisson distribution and can trip us up...

The PoCSverse Random Networks 30 of 81

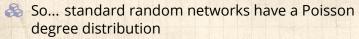
Pure random networks How to build theoretically

Degree distributions

Generalized Networks

Configuration model How to build in practice Random friends are

General random networks



 \clubsuit Generalize to arbitrary degree distribution P_k .

Also known as the configuration model. [7]

Can generalize construction method from ER random networks.

 \triangle Assign each node a weight w from some distribution P_w and form links with probability

 $P(\text{link between } i \text{ and } j) \propto w_i w_j.$

But we'll be more interested in

1. Randomly wiring up (and rewiring) already existing nodes with fixed degrees.

2. Examining mechanisms that lead to networks with certain degree distributions.

The PoCSverse Random Networks 33 of 81

Pure random networks

Generalized Networks Configuration model How to build in practice

Random networks: examples

Coming up:

Example realizations of random networks with power law degree distributions:

- N = 1000.
- $P_k \propto k^{-\gamma}$ for $k \geq 1$.
- Set $P_0 = 0$ (no isolated nodes).
- Vary exponent γ between 2.10 and 2.91.
- Again, look at full network plus the largest component.
- Apart from degree distribution, wiring is random.

The PoCSverse Random Networks 34 of 81

Pure random networks

How to build theoretically

Degree distributions

Generalized Networks

Configuration model How to build in practice

Random networks: examples for N=1000

 $\gamma = 2.19$ $\langle k \rangle = 2.986$

 $\gamma = 2.28$ $\langle k \rangle = 2.306$

 $\gamma = 2.37$ $\langle k \rangle = 2.504$

 $\gamma = 2.46$ $\langle k \rangle = 1.856$

 $\gamma = 2.64$ $\langle k \rangle = 1.6$

 $\gamma = 2.73$ $\langle k \rangle = 1.862$

 $\gamma = 2.82$ $\langle k \rangle = 1.386$

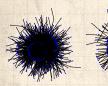
The PoCSverse Random Networks 35 of 81

Pure random networks How to build theoretically Clustering Degree distributions

Generalized Networks

Configuration model How to build in practice Random friends are

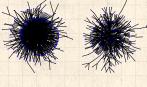
Random networks: largest components



 $\gamma = 2.28$ $\langle k \rangle = 2.306$

 $\gamma = 2.37$ $\langle k \rangle = 2.504$

 $\gamma = 2.46$ $\langle k \rangle = 1.856$



How to build in practice Motifs

Random friends are

References

 $\gamma = 2.1$

 $\langle k \rangle = 3.448$

 $\gamma = 2.55$ $\langle k \rangle = 1.712$

 $\langle k \rangle = 1.6$

 $\gamma = 2.73$ $\langle k \rangle = 1.862$

 $\langle k \rangle = 1.386$

36 of 81 Pure random networks

The PoCSverse

Random Networks

Definitions How to build theoretically

Clustering Degree distributions

Generalized Random Networks

Configuration model

Models

Generalized random networks:

- \triangle Arbitrary degree distribution P_k .
- Create (unconnected) nodes with degrees sampled from P_k .
- Wire nodes together randomly.
- Create ensemble to test deviations from randomness.

The PoCSverse Random Networks 38 of 81

Pure random networks

How to build theoretically

Degree distributions

Generalized Networks

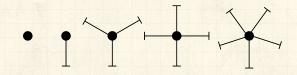
Configuration model How to build in practice

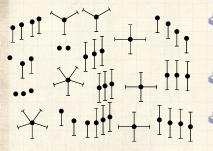
Random friends are

Building random networks: Stubs

Phase 1:

Idea: start with a soup of unconnected nodes with stubs (half-edges):





Randomly select stubs (not nodes!) and connect them.

- Must have an even number of stubs.
- Initially allow self- and repeat connections.

The PoCSverse Random Networks 39 of 81

Pure random networks

How to build theoretically Degree distributions

Generalized Networks

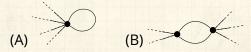
Configuration model How to build in practice

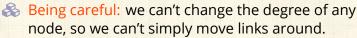
Random friends are

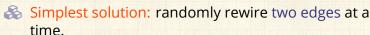
Building random networks: First rewiring

Phase 2:

Now find any (A) self-loops and (B) repeat edges and randomly rewire them.







The PoCSverse Random Networks 40 of 81

Pure random networks

Definitions

How to build theoretically Some visual examples

Degree distributions

Generalized Random Networks

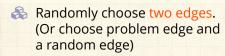
Configuration model

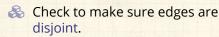
How to build in practice

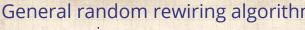
Random friends are strange

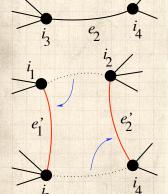
Largest component

General random rewiring algorithm









- Rewire one end of each edge.
- Node degrees do not change.
- Works if e_1 is a self-loop or repeated edge.
- Same as finding on/off/on/off 4-cycles. and rotating them.

The PoCSverse Random Networks 41 of 81

Pure random networks

How to build theoretically

Degree distributions Generalized

Networks Configuration model

How to build in practice

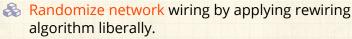
Random friends are

Sampling random networks

Phase 2:

Use rewiring algorithm to remove all self and repeat loops.

Phase 3:



Rule of thumb: # Rewirings $\simeq 10 \times \# \text{ edges}^{[5]}$.

The PoCSverse Random Networks 42 of 81

Pure random networks How to build theoretically

Degree distributions

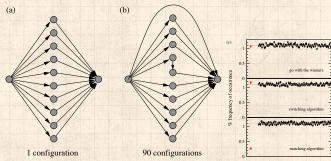
Generalized Random Networks

Configuration model How to build in practice

Random sampling

Problem with only joining up stubs is failure to randomly sample from all possible networks.

<page-header> Example from Milo et al. (2003) [5]:



The PoCSverse Random Networks 43 of 81

Pure random networks

Definitions

How to build theoretically Some visual examples

Clustering

Degree distributions

Generalized Random Networks

Configuration model
How to build in practice

Random friends are strange

Sampling random networks

- \mathbb{R} What if we have P_k instead of N_k ?
- Must now create nodes before start of the construction algorithm.
- Generate N nodes by sampling from degree distribution P_k .
- Easy to do exactly numerically since k is discrete.
- \mathbb{A} Note: not all P_{k} will always give nodes that can be wired together.

The PoCSverse Random Networks 44 of 81

Pure random networks

Degree distributions Generalized Networks

How to build in practice

- Idea of motifs [8] introduced by Shen-Orr, Alon et al. in 2002.
- Looked at gene expression within full context of transcriptional regulation networks.
- Specific example of Escherichia coli.
- Directed network with 577 interactions (edges) and 424 operons (nodes).
- Used network randomization to produce ensemble of alternate networks with same degree frequency N_k .
- Looked for certain subnetworks (motifs) that appeared more or less often than expected

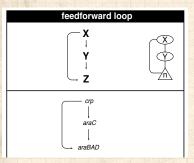
The PoCSverse Random Networks 46 of 81

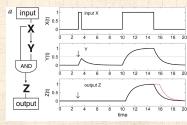
Pure random networks How to build theoretically

Degree distributions

Generalized Networks

How to build in practice Motifs Random friends are





The PoCSverse Random Networks 47 of 81

Pure random networks

How to build theoretically

Degree distributions

Generalized Networks

Configuration model How to build in practice Motifs

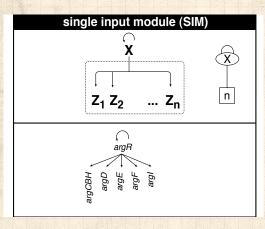
Random friends are

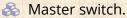
References

 \mathbb{R} Z only turns on in response to sustained activity in X.

 \mathbb{R} Turning off X rapidly turns off Z.

Analogy to elevator doors.





The PoCSverse Random Networks 48 of 81

Pure random networks

Definitions

How to build theoretically Some visual examples

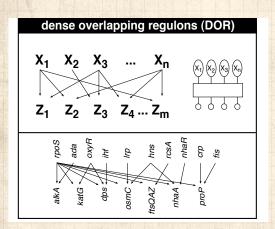
Clustering

Degree distributions

Generalized Random Networks

Configuration model How to build in practice Motifs

Random friends are



The PoCSverse Random Networks 49 of 81

networks

Pure random Definitions

How to build theoretically

Clustering

Degree distributions

Generalized Random Networks

Configuration model How to build in practice Motifs

Random friends are

- Note: selection of motifs to test is reasonable but nevertheless ad-hoc.
- A For more, see work carried out by Wiggins et al. at Columbia.

The PoCSverse Random Networks 50 of 81

Pure random networks

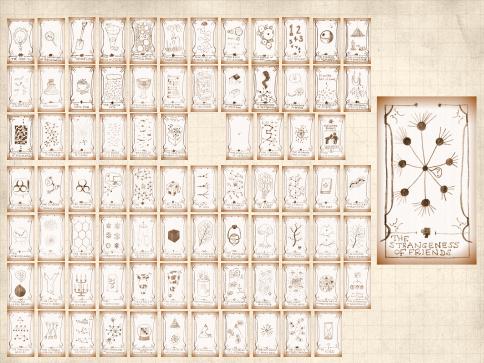
How to build theoretically

Degree distributions

Generalized Networks

Configuration model How to build in practice Motifs

Random friends are



- $\ref{eq:constraint}$ The degree distribution P_k is fundamental for our description of many complex networks
- $\ensuremath{\&}$ Again: P_k is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- Define Q_k to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):

$$Q_k \propto k P_k$$

Normalized form:

$$Q_k = \frac{kP_k}{\sum_{k'=0}^{\infty} k' P_{k'}} = \frac{kP_k}{\langle k \rangle}.$$

Big deal: Rich-get-richer mechanism is built into this selection process.

The PoCSverse Random Networks 53 of 81

Pure random networks

Definitions

How to build theoretically Some visual examples

egree distributions

Generalized Random Networks

Configuration model How to build in practice Motifs

Random friends are strange

ar gest component

- For networks, Q_k is also the probability that a friend (neighbor) of a random node has k friends.
- \clubsuit Useful variant on Q_k :

 R_k = probability that a friend of a random node has k other friends.

$$R_k = \frac{(k+1)P_{k+1}}{\sum_{k'=0}(k'+1)P_{k'+1}} = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

- \clubsuit Equivalent to friend having degree k+1.
- Natural question: what's the expected number of other friends that one friend has?

The PoCSverse Random Networks 54 of 81

Pure random networks Definitions How to build theoretically

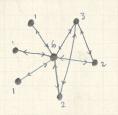
How to build theoretically Some visual examples Clustering Degree distributions

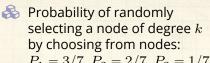
Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

References





$$\begin{split} P_1 &= 3/7,\, P_2 = 2/7,\, P_3 = 1/7,\\ P_6 &= 1/7. \end{split}$$

Probability of landing on a node of degree k after randomly selecting an edge and then randomly choosing one direction to travel:

$$Q_1 = 3/16, Q_2 = 4/16, \ Q_3 = 3/16, Q_6 = 6/16.$$

Probability of finding # outgoing edges = k after randomly selecting an edge and then randomly choosing one direction to travel:

$$R_0 = 3/16 \; R_1 = 4/16, \ R_2 = 3/16, \; R_5 = 6/16.$$

The PoCSverse Random Networks 55 of 81

Pure random networks

How to build theoretically

Generalized Networks

Configuration model How to build in practice

Random friends are

Given R_k is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\begin{split} \left\langle k \right\rangle_R &= \sum_{k=0}^\infty k R_k = \sum_{k=0}^\infty k \frac{(k+1)P_{k+1}}{\left\langle k \right\rangle} \\ &= \frac{1}{\left\langle k \right\rangle} \sum_{k=1}^\infty k(k+1)P_{k+1} \\ &= \frac{1}{\left\langle k \right\rangle} \sum_{k=1}^\infty \left((k+1)^2 - (k+1)\right) P_{k+1} \end{split}$$

(where we have sneakily matched up indices)

$$=\frac{1}{\langle k\rangle}\sum_{j=0}^{\infty}(j^2-j)P_j\quad \text{(using j = k+1)}$$

$$=\frac{1}{\langle k\rangle}\left(\langle k(k-1)\rangle\right)$$

The PoCSverse Random Networks 56 of 81

Pure random networks

Definitions

How to build theoretically Some visual examples

lustering

Degree distribution

Generalized Random Networks

Configuration model How to build in practice Motifs

Random friends are strange

curgest component

- Note: our result, $\langle k \rangle_R = \frac{1}{\langle k \rangle} \left(\langle k(k-1) \rangle \right)$, is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

A Therefore:

$$\langle k \rangle_R = \frac{1}{\langle k \rangle} \left(\langle k \rangle^2 + \langle k \rangle - \langle k \rangle \right) = \langle k \rangle$$

- Again, neatness of results is a special property of the Poisson distribution.
- So friends on average have $\langle k \rangle$ other friends, and $\langle k \rangle + 1$ total friends...

The PoCSverse Random Networks 57 of 81

Pure random networks Definitions How to build theoretically

Some visual examples
Clustering

Generalized Random Networks

Configuration model
How to build in practice
Motifs

Random friends are strange

argest component

 \mathbb{A} In fact, R_k is rather special for pure random networks ...

Substituting

$$P_k = \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

into

$$R_k = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

we have

$$R_k = \frac{(k+1)}{\langle k \rangle} \frac{\langle k \rangle^{(k+1)}}{(k+1)!} e^{-\langle k \rangle} = \frac{(k+1)}{\langle k \rangle} \frac{\langle k \rangle^{(k+1)}}{(k+1)k!} e^{-\langle k \rangle}$$

$$=\frac{\langle k \rangle^k}{k!}e^{-\langle k \rangle} \equiv P_k.$$

The PoCSverse Random Networks 58 of 81

Pure random networks

How to build theoretically

Generalized Networks

Configuration model How to build in practice

Random friends are

#samesies.

Two reasons why this matters

Reason #1:

Average # friends of friends per node is

$$\langle k_2 \rangle = \langle k \rangle \times \langle k \rangle_R = \langle k \rangle \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle - \langle k \rangle \right) = \langle k^2 \rangle - \langle k \rangle.$$

- Key: Average depends on the 1st and 2nd moments of P_k and not just the 1st moment.
- Three peculiarities:
 - 1. We might guess $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$ but it's actually $\langle k(k-1) \rangle$.
 - 2. If P_k has a large second moment, then $\langle k_2 \rangle$ will be big. (e.g., in the case of a power-law distribution)
 - 3. Your friends really are different from you... [4, 6]
 - 4. See also: class size paradoxes (nod to: Gelman)

The PoCSverse Random Networks 59 of 81

Pure random networks

How to build theoretically

Generalized

Networks Configuration model

How to build in practice

Random friends are

Two reasons why this matters

More on peculiarity #3:

- \triangle A node's average # of friends: $\langle k \rangle$
- \Re Friend's average # of friends: $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- Comparison:

$$\frac{\langle k^2 \rangle}{\langle k \rangle} = \langle k \rangle \frac{\langle k^2 \rangle}{\langle k \rangle^2} = \langle k \rangle \frac{\sigma^2 + \langle k \rangle^2}{\langle k \rangle^2} = \langle k \rangle \left(1 + \frac{\sigma^2}{\langle k \rangle^2} \right) \ge \langle k \rangle$$

- So only if everyone has the same degree (variance= $\sigma^2 = 0$) can a node be the same as its friends.
- Intuition: For networks, the more connected a node, the more likely it is to be chosen as a friend.

The PoCSverse Random Networks 60 of 81

Pure random networks

How to build theoretically

Degree distributions

Generalized

Networks

Configuration model How to build in practice

Random friends are

"Generalized friendship paradox in complex networks: The case of scientific collaboration"

Eom and Jo, Nature Scientific Reports, **4**, 4603, 2014. [3]

Your friends really are monsters #winners:1

- Go on, hurt me: Friends have more coauthors, citations, and publications.
- Other horrific studies: your connections on Twitter have more followers than you, are happier than you [1], more sexual partners than you, ...
- The hope: Maybe they have more enemies and diseases too.
- Research possibility: The Frenemy Paradox.

The PoCSverse Random Networks 61 of 81

Pure random networks

Definitions

How to build theoretically Some visual examples

Clustering
Degree distributions

Generalized Random Networks

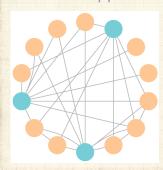
Configuration model
How to build in practice

Random friends are strange

Largest componen

¹Some press here ☑ [MIT Tech Review].

Related disappointment:



- Nodes see their friends' color choices.
- Which color is more popular?1
- Again: thinking in edge space changes everything.

The PoCSverse Random Networks 62 of 81

Pure random networks

How to build theoretically

Degree distributions

Generalized Networks

Configuration model How to build in practice

Random friends are

¹https://www.washingtonpost.com/graphics/business/ wonkblog/majority-illusion/

Two reasons why this matters

(Big) Reason #2:

- $\langle k \rangle_R$ is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- As $N \to \infty$, does our network have a giant component?
- Defn: Component = connected subnetwork of nodes such that ∃ path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.
- Defn: Giant component = component that comprises a non-zero fraction of a network as $N \to \infty$.
- Note: Component = Cluster

The PoCSverse Random Networks 63 of 81

Pure random networks Definitions How to build theoretically

Some visual examples
Clustering
Degree distributions

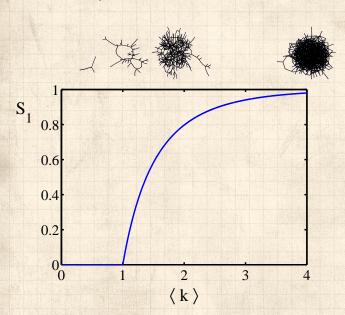
Generalized Random Networks

Configuration model

How to build in practice

Motifs

Random friends are strange



The PoCSverse Random Networks 65 of 81

Pure random networks

Definitions

How to build theoretically Some visual examples

Clustering

Degree distributions

Generalized Random Networks

Configuration model How to build in practice Motifs

Random friends are strange

Largest component

Structure of random networks

Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.
- AII of this is the same as requiring $\langle k \rangle_B > 1$.
- Giant component condition (or percolation) condition):

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1$$

- Again, see that the second moment is an essential part of the story.
- Equivalent statement: $\langle k^2 \rangle > 2 \langle k \rangle$

The PoCSverse Random Networks 66 of 81

Pure random networks How to build theoretically

Degree distributions

Generalized Networks

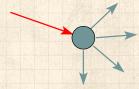
Configuration model How to build in practice Random friends are

Largest component

Spreading on Random Networks

- For random networks, we know local structure is pure branching.
- Successful spreading is a contingent on single edges infecting nodes.

Failure: Success



- Focus on binary case with edges and nodes either infected or not.
- First big question: for a given network and contagion process, can global spreading from a single seed occur?

The PoCSverse Random Networks 67 of 81

Pure random networks

How to build theoretically Degree distributions

Generalized

Networks

Configuration model How to build in practice Random friends are

Largest component

Global spreading condition

We need to find: [2]

R = the average # of infected edges that one random infected edge brings about.

& Call **R** the gain ratio.

Define B_{k1} as the probability that a node of degree k is infected by a single infected edge.

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{\frac{kP_k}{\langle k \rangle}}{\text{prob. of }}$$
 prob. of connecting to a degree k node

$$\underbrace{(k-1)}_{\text{\# outgoing infected edges}} \bullet \underbrace{B_{k1}}_{\text{Prob. of infection}}$$

$$+\sum_{k=0}^{\infty} \frac{\widehat{kP_k}}{\langle k \rangle} \bullet \underbrace{\underbrace{0}}_{\begin{subarray}{c} \# \text{ outgoing infected} \\ \text{ edges} \end{subarray}}_{\begin{subarray}{c} \# \text{ outgoing infected} \\ \text{ no infection} \end{subarray}}$$

The PoCSverse Random Networks 68 of 81

Pure random networks Definitions How to build theoretically

How to build theoretically Some visual examples Clustering Degree distributions

Generalized Random Networks

Configuration model
How to build in practice
Motifs
Random friends are

strange Largest component

Global spreading condition

Our global spreading condition is then:

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} > 1.$$

& Case 1–Rampant spreading: If $B_{k1} = 1$ then

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) = \frac{\langle k(k-1) \rangle}{\langle k \rangle} > 1.$$

Good: This is just our giant component condition again.

The PoCSverse Random Networks 69 of 81

Pure random networks Definitions

How to build theoretically

Some visual examples
Clustering
Degree distributions

Generalized Random Networks

Configuration model

How to build in practice

Motifs

Random friends are strange

Largest component

Global spreading condition

 \triangle Case 2—Simple disease-like: If $B_{k,1} = \beta < 1$ then

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet \beta > 1.$$

- \triangle A fraction (1- β) of edges do not transmit infection.
- Analogous phase transition to giant component case but critical value of $\langle k \rangle$ is increased.
- Aka bond percolation .
- \mathbb{R} Resulting degree distribution \tilde{P}_{h} :

$$\tilde{P}_k = \beta^k \sum_{i=k}^{\infty} \binom{i}{k} (1-\beta)^{i-k} P_i.$$

The PoCSverse Random Networks 70 of 81

Pure random networks How to build theoretically

Degree distributions

Generalized Networks

Configuration model How to build in practice Random friends are

Largest component

Giant component for standard random networks:

- \Leftrightarrow Recall $\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$.
- Determine condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

- \Leftrightarrow Therefore when $\langle k \rangle > 1$, standard random networks have a giant component.
- \clubsuit When $\langle k \rangle < 1$, all components are finite.
- & Fine example of a continuous phase transition $\ensuremath{\mathbb{Z}}$.
- \clubsuit We say $\langle k \rangle = 1$ marks the critical point of the system.

The PoCSverse Random Networks 71 of 81

Pure random networks

How to build theoretically

Degree distributions

Generalized Networks

Configuration model How to build in practice Random friends are

Largest component

Random networks with skewed P_k :

 $\mbox{\ensuremath{\&}}$ e.g, if $P_k=ck^{-\gamma}$ with $2<\gamma<3$, $k\geq 1$, then

$$\begin{split} \langle k^2 \rangle &= c \sum_{k=1}^\infty k^2 k^{-\gamma} \\ &\sim \int_{x=1}^\infty x^{2-\gamma} \mathrm{d}x \\ &\propto \left. x^{3-\gamma} \right|_{x=1}^\infty = \infty \quad (\gg \langle k \rangle). \end{split}$$

- So giant component always exists for these kinds of networks.
- \Leftrightarrow Cutoff scaling is k^{-3} : if $\gamma > 3$ then we have to look harder at $\langle k \rangle_R$.
- \clubsuit How about $P_k = \delta_{kk_0}$?

The PoCSverse Random Networks 72 of 81

Pure random networks Definitions How to build theoretically

Some visual examples
Clustering
Degree distributions

Generalized Random Networks

Configuration model

How to build in practice

Motifs

Random friends are strange Largest component

D-6----

And how big is the largest component?

- \clubsuit Define S_1 as the size of the largest component.
- \Leftrightarrow Consider an infinite ER random network with average degree $\langle k \rangle$.
- & Let's find S_1 with a back-of-the-envelope argument.
- & Define δ as the probability that a randomly chosen node does not belong to the largest component.
- $\red{solution}$ Simple connection: $\delta = 1 S_1$.
- Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.
- 备 So

$$\delta = \sum_{k=0}^{\infty} P_k \delta^k$$

Substitute in Poisson distribution...

The PoCSverse Random Networks 73 of 81

Pure random networks Definitions How to build theoretically Some visual examples

Degree distributions
Generalized
Random

Networks

Configuration model
How to build in practice
Motifs
Random friends are

Largest component

Carrying on:

$$\begin{split} \frac{\delta}{\delta} &= \sum_{k=0}^{\infty} P_k \delta^k = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle} \delta^k \\ &= e^{-\langle k \rangle} \sum_{k=0}^{\infty} \frac{(\langle k \rangle \delta)^k}{k!} \\ &= e^{-\langle k \rangle} e^{\langle k \rangle \delta} = e^{-\langle k \rangle (1 - \delta)}. \end{split}$$

Now substitute in $\delta=1-S_1$ and rearrange to obtain:

$$S_1 = 1 - e^{-\langle k \rangle S_1}.$$

The PoCSverse Random Networks 74 of 81

Pure random networks Definitions How to build theoretically

Some visual examples
Clustering

Degree distributions

Generalized Random Networks

Configuration model How to build in practice Motifs

Random friends are strange

Largest component

- We can figure out some limits and details for $S_1 = 1 - e^{-\langle k \rangle S_1}$.
- \clubsuit First, we can write $\langle k \rangle$ in terms of S_1 :

$$\langle k \rangle = \frac{1}{S_1} \ln \frac{1}{1 - S_1}.$$

- \Leftrightarrow As $\langle k \rangle \to 0$, $S_1 \to 0$.
- \Leftrightarrow As $\langle k \rangle \to \infty$, $S_1 \to 1$.
- \Re Notice that at $\langle k \rangle = 1$, the critical point, $S_1 = 0$.
- $\red {\Bbb S}$ Only solvable for $S_1>0$ when $\langle k\rangle>1$.
- Really a transcritical bifurcation. [9]

The PoCSverse Random Networks 75 of 81

Pure random networks

How to build theoretically

Degree distributions

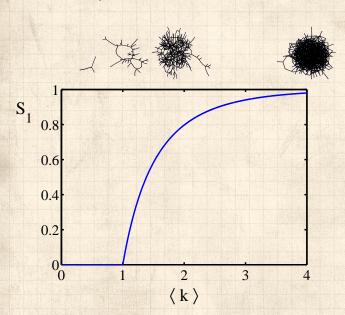
Generalized

Networks

Configuration model How to build in practice

Random friends are

Largest component



The PoCSverse Random Networks 76 of 81

Pure random networks

Definitions

How to build theoretically Some visual examples

Clustering
Degree distributions

Generalized

Random Networks Configuration model

How to build in practice Motifs

Random friends are strange

Largest component

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- But we know our friends are different from us...
- \Leftrightarrow Works for ER random networks because $\langle k \rangle = \langle k \rangle_R.$
- We need a separate probability δ' for the chance that an edge leads to the giant (infinite) component.
- We can sort many things out with sensible probabilistic arguments...
- More detailed investigations will profit from a spot of Generatingfunctionology. [10]
- CocoNuTs: We figure out the final size and complete dynamics.

The PoCSverse Random Networks 77 of 81

Pure random networks Definitions How to build theoretically

Degree distributions
Generalized

Networks
Configuration model
How to build in practice

Motifs Random friends are strange Largest component

References I

[1] J. Bollen, B. Gonçalves, I. van de Leemput, and G. Ruan. The happiness paradox: Your friends are happier than you. EPJ Data Science, 6:4, 2017. pdf

P. S. Dodds, K. D. Harris, and J. L. Payne. [2] Direct, phyiscally motivated derivation of the contagion condition for spreading processes on generalized random networks. Phys. Rev. E, 83:056122, 2011. pdf

Y.-H. Eom and H.-H. Jo. [3] Generalized friendship paradox in complex networks: The case of scientific collaboration. Nature Scientific Reports, 4:4603, 2014. pdf

The PoCSverse Random Networks 79 of 81

Pure random networks How to build theoretically Degree distributions

Generalized Networks

Configuration model How to build in practice Random friends are

References II

- [4] S. L. Feld.
 Why your friends have more friends than you do.
 Am. J. of Sociol., 96:1464–1477, 1991. pdf
- [5] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon. On the uniform generation of random graphs with prescribed degree sequences, 2003. pdf
- [6] M. E. J. Newman. Ego-centered networks and the ripple effect,. Social Networks, 25:83–95, 2003. pdf
- [7] M. E. J. Newman.

 The structure and function of complex networks.

 SIAM Rev., 45(2):167–256, 2003. pdf

The PoCSverse Random Networks 80 of 81

Pure random networks Definitions How to build theoretically Some visual examples

Degree distributions Generalized Random Networks

Configuration model
How to build in practice
Motifs
Random friends are

Largest component

References III

S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. [8] Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics, 31:64-68, 2002. pdf

[9] S. H. Strogatz. Nonlinear Dynamics and Chaos. Addison Wesley, Reading, Massachusetts, 1994.

[10] H. S. Wilf. Generatingfunctionology. A K Peters, Natick, MA, 3rd edition, 2006. pdf The PoCSverse Random Networks 81 of 81

Pure random networks How to build theoretically

Degree distributions Generalized

Networks

Configuration model How to build in practice Random friends are

