System Robustness

Last updated: 2020/09/12, 14:01:53 EDT

Principles of Complex Systems, Vol. 1 | @pocsvox CSYS/MATH 300, Fall, 2020

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

PoCS, Vol. 1 @pocsvox

System Robustness

Robustness

Narrative causality Self-Organized Criticality COLD theory Network robustness

References

29 1 of 44

These slides are brought to you by:

PoCS, Vol. 1 @pocsvox

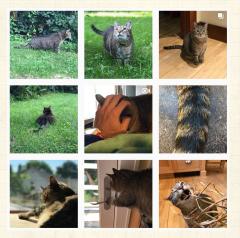
System Robustness

Robustness

HOT theory Narrative causality Self-Organized Criticality COLD theory Network robustness

These slides are also brought to you by:

Special Guest Executive Producer



☑ On Instagram at pratchett_the_cat

PoCS, Vol. 1 @pocsvox

System Robustness

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory

Network robustness References

99 € 3 of 44

Outline

Robustness

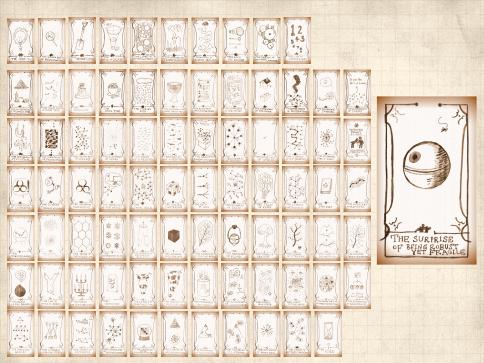
HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

PoCS, Vol. 1 @pocsvox System Robustness

Robustness

HOT theory Narrative causality Self-Organized Criticality COLD theory Network robustness



- Many complex systems are prone to cascading catastrophic failure: exciting!!!
 - Blackouts
 - Disease outbreaks
 - Wildfires
 - Earthquakes
 - Organisms, individuals and societies
 - **Ecosystems**
 - Cities
 - Myths: Achilles.
- But complex systems also show persistent robustness (not as exciting but important...)
- Robustness and Failure may be a power-law story...

PoCS, Vol. 1 @pocsvox System Robustness

Robustness

HOT theory Self-Organized Criticality COLD theory

Our emblem of Robust-Yet-Fragile:

PoCS, Vol. 1 @pocsvox

System Robustness

Robustness

HOT theory

Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

References

90 € 8 of 44

"Trouble ..."

PoCS, Vol. 1 @pocsvox

System Robustness

Robustness

HOT theory

Narrative causality
Random forests
Self-Organized Criticality
COLD theory
Network robustness

PoCS, Vol. 1 @pocsvox System Robustness

System robustness may result from

- 1. Evolutionary processes
- 2. Engineering/Design
- 🚵 Idea: Explore systems optimized to perform under uncertain conditions.
- The handle: 'Highly Optimized Tolerance' (HOT) [4, 5, 6, 10]
- The catchphrase: Robust yet Fragile
- 🚵 The people: Jean Carlson and John Doyle 🗹
- Great abstracts of the world #73: "There aren't any." [7]

HOT theory

Self-Organized Criticality COLD theory

PoCS, Vol. 1 @pocsvox System Robustness

Features of HOT systems: [5, 6]

- High performance and robustness
- Designed/evolved to handle known stochastic environmental variability
- Fragile in the face of unpredicted environmental signals
- Highly specialized, low entropy configurations
- Power-law distributions appear (of course...)

Robustness

Narrative causality
Random forests

Self-Organized Criticality COLD theory Network robustness

PoCS, Vol. 1 @pocsvox System Robustness

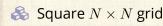
HOT combines things we've seen:

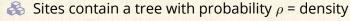
- Variable transformation
- Constrained optimization
- Need power law transformation between variables: $(Y = X^{-\alpha})$
- Recall PLIPLO is bad...
- MIWO is good: Mild In, Wild Out
- X has a characteristic size but Y does not

Robustness HOT theory

Self-Organized Criticality COLD theory

Forest fire example: [5]





- \clubsuit Sites are empty with probability $1-\rho$
- $\ensuremath{\mathfrak{S}}$ Fires start at location (i,j) according to some distribution P_{ij}
- Fires spread from tree to tree (nearest neighbor only)
- Connected clusters of trees burn completely
- Empty sites block fire
- Best case scenario: Build firebreaks to maximize average # trees left intact given one spark

PoCS, Vol. 1 @pocsvox System

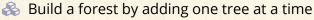
Robustness

Robustness HOT theory

Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

PoCS, Vol. 1 @pocsvox System Robustness

Forest fire example: [5]



Test D ways of adding one tree

 \clubsuit Average over $P_{i,j}$ = spark probability

AD = 1: random addition

 $AD = N^2$: test all possibilities

Robustness HOT theory

Self-Organized Criticality COLD theory

References

Measure average area of forest left untouched

f(c) = distribution of fire sizes c (= cost)

 \Re Yield = $Y = \rho - \langle c \rangle$

Specifics:

$$P_{ij} = P_{i;a_x,b_x}P_{j;a_y,b_y}$$

where

$$P_{i;a,b} \propto e^{-[(i+a)/b]^2}$$

- \clubsuit In the original work, $b_y > b_x$
- \triangle Distribution has more width in y direction.

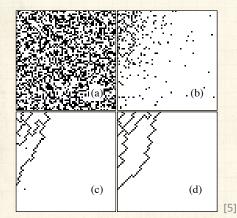
PoCS, Vol. 1 @pocsvox System Robustness

Robustness

HOT theory

Self-Organized Criticality COLD theory Network robustness

HOT Forests



$$N = 64$$

- (a) D = 1
- (b) D = 2
- (c) D=N
- (d) $D = N^2$

 P_{ij} has a Gaussian decay

Optimized forests do well on average (robustness)

But rare extreme events occur (fragility)

PoCS, Vol. 1 @pocsvox

System Robustness

Robustness

HOT theory

Random forests
Self-Organized Criticality
COLD theory
Network robustness

HOT Forests

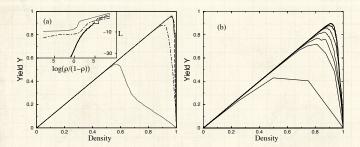


FIG. 2. Yield vs density $Y(\rho)$: (a) for design parameters D =1 (dotted curve), 2 (dot-dashed), N (long dashed), and N^2 (solid) with N = 64, and (b) for D = 2 and $N = 2, 2^2, ..., 2^7$ running from the bottom to top curve. The results have been averaged over 100 runs. The inset to (a) illustrates corresponding loss functions $L = \log[\langle f \rangle/(1 - \langle f \rangle)]$, on a scale which more clearly differentiates between the curves.

PoCS, Vol. 1 @pocsvox

System Robustness

Robustness

HOT theory

Self-Organized Criticality COLD theory Network robustness

HOT Forests:

PoCS, Vol. 1 @pocsvox System Robustness

 $\Re Y$ = 'the average density of trees left unburned in a configuration after a single spark hits.' [5]

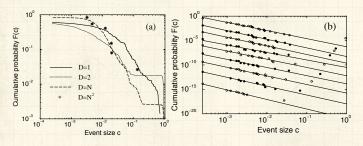


FIG. 3. Cumulative distributions of events F(c): (a) at peak yield for D = 1, 2, N, and N^2 with N = 64, and (b) for D = N^2 , and N = 64 at equal density increments of 0.1, ranging at $\rho = 0.1$ (bottom curve) to $\rho = 0.9$ (top curve).

Robustness

HOT theory

Self-Organized Criticality COLD theory

Narrative causality:

PoCS, Vol. 1 @pocsvox

System Robustness

Robustness

HOT theory

Narrative causality Random forests

Self-Organized Criticality COLD theory Network robustness

Random Forests

PoCS, Vol. 1 @pocsvox System Robustness

D=1: Random forests = Percolation [11]

- Randomly add trees.
- \bowtie Below critical density ρ_c , no fires take off.
- \clubsuit Above critical density ρ_c , percolating cluster of trees burns.
- \triangle Only at ρ_c , the critical density, is there a power-law distribution of tree cluster sizes.
- Forest is random and featureless.

Robustness Random forests Self-Organized Criticality COLD theory

HOT forests nutshell:

- Highly structured
- Power law distribution of tree cluster sizes for a broad range of ρ_r , including below ρ_c .
- \aleph No specialness of ρ_c
- Forest states are tolerant
- Uncertainty is okay if well characterized
- \Re If $P_{i,j}$ is characterized poorly or changes too fast, failure becomes highly likely
- Growth is key to toy model which is both algorithmic and physical.
- HOT theory is more general than just this toy model.

PoCS, Vol. 1 @pocsvox System Robustness

Robustness Random forests Self-Organized Criticality COLD theory

HOT forests—Real data:

"Complexity and Robustness," Carlson & Dolye [6]

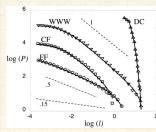
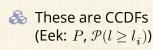
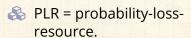


Fig. 1. Log-log (base 10) comparison of DC, WWW, CF, and FF data (symbol) with TR. models (bott lines) (for $\beta = 0.9, 9.1, 8.5, or <math>\alpha = 1/\beta = 3.1.1, 10.05$), respectively) and the SCC FF model ($\alpha = 0.5, dashed). Reference lines (<math>\alpha = 0.5, dashed). Reference lines (\alpha = 0.5, dashed). Reference (\alpha$





Minimize cost subject to resource (barrier) constraints: $C = \sum_i p_i l_i$

given
$$l_i = f(r_i) \text{ and } \sum r_i \leq R.$$

- DC = Data Compression.
- Horror: log. Screaming: "The base! What is the base!? You monsters!"

PoCS, Vol. 1 @pocsvox

System Robustness

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory

HOT theory:

The abstract story, using figurative forest fires:

- $\ensuremath{\mathfrak{S}}$ Given some measure of failure size y_i and correlated resource size x_i with relationship $y_i=x_i^{-\alpha}$, $i=1,\dots,N_{\rm Sites}.$
- \Leftrightarrow Design system to minimize $\langle y \rangle$ subject to a constraint on the x_i .
- Minimize cost:

$$C = \sum_{i=1}^{N_{\rm sites}} \mathbf{Pr}(y_i) y_i$$

Subject to $\sum_{i=1}^{N_{\text{sites}}} x_i = \text{constant.}$

PoCS, Vol. 1 @pocsvox System Robustness

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality

COLD theory Network robustness

1. Cost: Expected size of fire:

$$C_{ ext{fire}} \propto \sum_{i=1}^{N_{ ext{sites}}} p_i a_i.$$

 a_i = area of ith site's region, and p_i = avg. prob. of fire at ith site over some time frame.

2. Constraint: building and maintaining firewalls. Per unit area, and over same time frame:

$$C_{ ext{firewalls}} \propto \sum_{i=1}^{N_{ ext{sites}}} a_i^{1/2} a_i^{-1}.$$

- We are assuming isometry.
- ightharpoonup In d dimensions, 1/2 is replaced by (d-1)/d
- 3. Insert question from assignment 7 d to find:

$$\Pr(a_i) \propto a_i^{-\gamma}.$$

PoCS, Vol. 1 @pocsvox System Robustness

Robustness
HOT theory
Narrative causality

Random forests
Self-Organized Criticality
COLD theory
Network robustness

Continuum version:

1. Cost function:

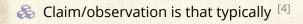
$$\langle C \rangle = \int C(\vec{x}) p(\vec{x}) \mathrm{d}\vec{x}$$

where C is some cost to be evaluated at each point in space \vec{x} (e.g., $V(\vec{x})^{\alpha}$), and $p(\vec{x})$ is the probability an Ewok jabs position \vec{x} with a sharpened stick (or equivalent).

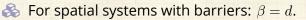
2. Constraint:

$$\int R(\vec{x}) d\vec{x} = c$$

where c is a constant.



$$V(\vec{x}) \sim R^{-\beta}(\vec{x})$$



PoCS, Vol. 1 @pocsvox System Robustness

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory
Network robustness

The Emperor's Robust-Yet-Fragileness:

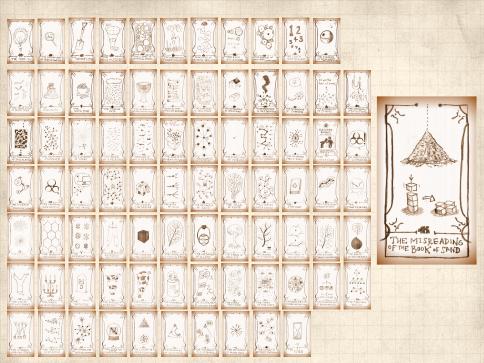
PoCS, Vol. 1 @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory

Network robustness
References



SOC theory

SOC = Self-Organized Criticality

- Idea: natural dissipative systems exist at 'critical states';
- Analogy: Ising model with temperature somehow self-tuning;
- Power-law distributions of sizes and frequencies arise 'for free';
- Introduced in 1987 by Bak, Tang, and Weisenfeld [3, 2, 8]: "Self-organized criticality an explanation of 1/f noise" (PRL, 1987);
- Problem: Critical state is a very specific point;
- Self-tuning not always possible;
- Much criticism and arguing...

PoCS, Vol. 1 @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality

COLD theory Network robustness

"How Nature Works: the Science of Self-Organized Criticality" **3**. 2 by Per Bak (1997). [2]

Avalanches of Sand and Rice ...

PoCS, Vol. 1 @pocsvox

System Robustness

Robustness

HOT theory Narrative causality

Self-Organized Criticality COLD theory Network robustness

"Complexity and Robustness"

Carlson and Doyle, Proc. Natl. Acad. Sci., **99**, 2538–2545, 2002. [6]

HOT versus SOC

- Both produce power laws
- Optimization versus self-tuning
- HOT systems viable over a wide range of high densities
- SOC systems have one special density
- HOT systems produce specialized structures
- SOC systems produce generic structures

PoCS, Vol. 1 @pocsvox System

Robustness

Robustness

HOT theory
Narrative causality
Random forests
Self-Organized Criticality

COLD theory
Network robustness

HOT theory—Summary of designed tolerance [6]

Table 1. Characteristics of SOC, HOT, and data

	Property	SOC	HOT and Data
1	Internal	Generic,	Structured,
	configuration	homogeneous,	heterogeneous,
		self-similar	self-dissimilar
2	Robustness	Generic	Robust, yet
			fragile
3	Density and yield	Low	High
4	Max event size	Infinitesimal	Large
5	Large event shape	Fractal	Compact
6	Mechanism for	Critical internal	Robust
	power laws	fluctuations	performance
7	Exponent α	Small	Large
8	lpha vs. dimension d	$\alpha \approx (d-1)/10$	$\alpha \approx 1/d$
9	DDOFs	Small (1)	Large (∞)
10	Increase model	No change	New structures,
	resolution		new sensitivities
11	Response to	Homogeneous	Variable
	forcing		

PoCS, Vol. 1 @pocsvox

System Robustness

Robustness

HOT theory Narrative causality

Self-Organized Criticality
COLD theory
Network robustness

COLD forests

PoCS, Vol. 1 @pocsvox System Robustness

Avoidance of large-scale failures

- Constrained Optimization with Limited Deviations [9]
- Weight cost of larges losses more strongly
- Increases average cluster size of burned trees...
- 🚵 ... but reduces chances of catastrophe
- Power law distribution of fire sizes is truncated

Robustness

Narrative causality
Random forests
Self-Organized Criticality

COLD theory

Cutoffs

PoCS, Vol. 1 @pocsvox System Robustness

Observed:

Power law distributions often have an exponential cutoff

$$P(x) \sim x^{-\gamma} e^{-x/x_c}$$

where x_c is the approximate cutoff scale.

May be Weibull distributions:

$$P(x) \sim x^{-\gamma} e^{-ax^{-\gamma+1}}$$

Robustness

Narrative causality Self-Organized Criticality COLD theory

Network robustness

We'll return to this later on:

- & Network robustness.
- Albert et al., Nature, 2000:
 "Error and attack tolerance of complex networks" [1]
- General contagion processes acting on complex networks. [13, 12]
- Similar robust-yet-fragile stories ...

PoCS, Vol. 1 @pocsvox System Robustness

Robustness

Narrative causality
Random forests
Self-Organized Criticality
COLD theory
Network robustness

The Emperor's Robust-Yet-Fragileness:

PoCS, Vol. 1 @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Random forests Self-Organized Criticality COLD theory

Network robustness References

References I

- R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of complex networks. Nature, 406:378-382, 2000. pdf
- P. Bak. [2] How Nature Works: the Science of Self-Organized Criticality. Springer-Verlag, New York, 1997.
- P. Bak, C. Tang, and K. Wiesenfeld. [3] Self-organized criticality - an explanation of 1/f noise. Phys. Rev. Lett., 59(4):381-384, 1987. pdf
- J. M. Carlson and J. Doyle. [4] Highly optimized tolerance: A mechanism for power laws in designed systems. Phys. Rev. E, 60(2):1412-1427, 1999. pdf

PoCS, Vol. 1 @pocsvox System Robustness

Robustness Narrative causality Self-Organized Criticality COLD theory

Network robustness References

References II

PoCS, Vol. 1 @pocsvox System Robustness

[5] J. M. Carlson and J. Doyle. Highly optimized tolerance: Robustness and design in complex systems. Phys. Rev. Lett., 84(11):2529-2532, 2000. pdf Robustness Narrative causality Self-Organized Criticality COLD theory

- [6] I. M. Carlson and J. Doyle. Complexity and robustness. Proc. Natl. Acad. Sci., 99:2538-2545, 2002. pdf
- [7] J. Doyle. Guaranteed margins for LQG regulators. IEEE Transactions on Automatic Control. 23:756-757, 1978. pdf

References III

- [8] H. J. Jensen.

 Self-Organized Criticality: Emergent Complex
 Behavior in Physical and Biological Systems.

 Cambridge Lecture Notes in Physics. Cambridge
 University Press, Cambridge, UK, 1998.
- [9] M. E. J. Newman, M. Girvan, and J. D. Farmer. Optimal design, robustness, and risk aversion. Phys. Rev. Lett., 89:028301, 2002.
- [10] D. Sornette.
 Critical Phenomena in Natural Sciences.
 Springer-Verlag, Berlin, 1st edition, 2003.
- [11] D. Stauffer and A. Aharony. Introduction to Percolation Theory. Taylor & Francis, Washington, D.C., Second edition, 1992.

PoCS, Vol. 1 @pocsvox System Robustness

Robustness
HOT theory
Narrative causality

Narrative causality
Random forests
Self-Organized Criticality
COLD theory

References IV

[12] D. I. Watts and P. S. Dodds. Influentials, networks, and public opinion formation.

Journal of Consumer Research, 34:441-458, 2007. pdf

[13] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks. Science, 296:1302-1305, 2002. pdf

PoCS, Vol. 1 @pocsvox System Robustness

Robustness

Narrative causality Self-Organized Criticality COLD theory

