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Two of the many things we struggle with
cognitively:
1. Probability.

 Ex. The Monty Hall Problem.
 Ex. Daughter/Son born on Tuesday.

(see next two slides; Wikipedia entry here.)

2. Logarithmic scales.

On counting and logarithms:

 Listen to Radiolab’s 2009 piece:
“Numbers.”.

 Later: Benford’s Law.

Also to be enjoyed: the magnificence of the
Dunning-Kruger effect
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Homo probabilisticus?
The set up:
 A parent has two children.

Simple probability question:
 What is the probability that both children are girls?

 1/4 …

The next set up:
 A parent has two children.
 We know one of them is a girl.

The next probabilistic poser:
 What is the probability that both children are girls?

 1/3 …
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Try this one:
 A parent has two children.
 We know one of them is a girl born on a Tuesday.

Simple question #3:
 What is the probability that both children are girls?

 ?

Last:
 A parent has two children.
 We know one of them is a girl born on December

31.

And …
 What is the probability that both children are girls?

 ?
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Let’s test our collective intuition:

Money≡
Belief

Two questions about wealth distribution in the
United States:
1. Please estimate the percentage of all wealth

owned by individuals when grouped into quintiles.
2. Please estimate what you believe each quintile

should own, ideally.
3. Extremes: 100, 0, 0, 0, 0 and 20, 20, 20, 20, 20
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Wealth distribution in the United States: [13]

“Building a better America—One wealth quintile at a time”
Norton and Ariely, 2011. [13]
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Wealth distribution in the United States: [13]

 A highly watched video based on this research is
here. PoCS, Vol. 1

@pocsvox
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The sizes of many systems’ elements appear to obey an
inverse power-law size distribution:𝑃(size = 𝑥) ∼ 𝑐 𝑥−𝛾

where 0 < 𝑥min < 𝑥 < 𝑥max and 𝛾 > 1.
 𝑥min = lower cutoff, 𝑥max = upper cutoff

 Negative linear relationship in log-log space:

log10𝑃(𝑥) = log10𝑐 − 𝛾log10𝑥
 We use base 10 because we are good people.
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Size distributions:

Usually, only the tail of the distribution obeys a
power law: 𝑃(𝑥) ∼ 𝑐 𝑥−𝛾 for 𝑥 large.
 Still use term ‘power-law size distribution.’
 Other terms:

 Fat-tailed distributions.
 Heavy-tailed distributions.

Beware:
 Inverse power laws aren’t the only ones:

lognormals, Weibull distributions, …
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Size distributions:

Many systems have discrete sizes 𝑘:
 Word frequency
 Node degree in networks: # friends, # hyperlinks,

etc.
 # citations for articles, court decisions, etc.

𝑃 (𝑘) ∼ 𝑐 𝑘−𝛾
where 𝑘min ≤ 𝑘 ≤ 𝑘max

 Obvious fail for 𝑘 = 0.
 Again, typically a description of distribution’s tail.
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Word frequency:

Brown Corpus (∼ 106 words):
rank word % q

1. the 6.8872
2. of 3.5839
3. and 2.8401
4. to 2.5744
5. a 2.2996
6. in 2.1010
7. that 1.0428
8. is 0.9943
9. was 0.9661
10. he 0.9392
11. for 0.9340
12. it 0.8623
13. with 0.7176
14. as 0.7137
15. his 0.6886

rank word % q
1945. apply 0.0055
1946. vital 0.0055
1947. September 0.0055
1948. review 0.0055
1949. wage 0.0055
1950. motor 0.0055
1951. fifteen 0.0055
1952. regarded 0.0055
1953. draw 0.0055
1954. wheel 0.0055
1955. organized 0.0055
1956. vision 0.0055
1957. wild 0.0055
1958. Palmer 0.0055
1959. intensity 0.0055
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Jonathan Harris’s Wordcount:
A word frequency distribution explorer:
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“Thing Explainer: Complicated Stuff in
Simple Words ”
by Randall Munroe (2015). [11]

Up goer five
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The statistics of surprise—words:

First—a Gaussian example:𝑃(𝑥)d𝑥 = 1√2𝜋𝜎𝑒−(𝑥−𝜇)2/2𝜎2d𝑥
linear:
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mean 𝜇 = 10, variance 𝜎2 = 1.

 Activity: Sketch 𝑃 (𝑥) ∼ 𝑥−1 for 𝑥 = 1 to 𝑥 = 107.
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The statistics of surprise—words:

Raw ‘probability’ (binned) for Brown Corpus:

linear:
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 𝑞𝑤 = normalized frequency of occurrence of word𝑤 (%).
 𝑁𝑞 = number of distinct words that have a

normalized frequency of occurrence 𝑞.
 e.g, 𝑞the ≃ 6.9%, 𝑁𝑞the

= 1.
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The statistics of surprise—words:

Complementary Cumulative Probability
Distribution 𝑁>𝑞:
linear:
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 Also known as the ‘Exceedance Probability.’

PoCS, Vol. 1
@pocsvox

Power-Law Size
Distributions

Our Intuition

Definition

Examples

Wild vs. Mild

CCDFs

Zipf’s law

Zipf ⇔ CCDF

References

.
.
.
.
.

.
21 of 64

My, what big words you have …

 Test capitalizes on word frequency following a
heavily skewed frequency distribution with a
decaying power-law tail.

 This Man Can Pronounce Every Word in the
Dictionary (story here)

 Best of Dr. Bailly
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The statistics of surprise:

Gutenberg-Richter law

 Log-log plot
 Base 10
 Slope = -1𝑁(𝑀 > 𝑚) ∝ 𝑚−1

 From both the very awkwardly similar Christensen
et al. and Bak et al.:
“Unified scaling law for earthquakes” [4, 1]
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The statistics of surprise:
From: “Quake Moves Japan Closer to U.S. and
Alters Earth’s Spin” by Kenneth Chang, March
13, 2011, NYT:
‘What is perhaps most surprising about the Japan
earthquake is how misleading history can be. In the
past 300 years, no earthquake nearly that
large—nothing larger than magnitude eight—had
struck in the Japan subduction zone. That, in turn, led
to assumptions about how large a tsunami might
strike the coast.’

“‘It did them a giant disservice,” said Dr. Stein of the
geological survey. That is not the first time that the
earthquake potential of a fault has been
underestimated. Most geophysicists did not think the
Sumatra fault could generate a magnitude 9.1
earthquake, …’
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ingredients such as salt, sugar, and egg constitute a major part of

our every-day diet. As a result, the set of distinct ingredients

roughly follows Heap’s law, as seen in Fig. 4, with an exponent

around 0:64. According to the method in previous work [20], the

exponent of Zipf’s law corresponding to Fig. 3 can be estimated by
1

l{1
. The product of this exponent and the exponent of Heap’s

law (0.64) is close to 1, which is consistent with the previous result

[21].

Quantifying similarity between cuisines
Our dataset can be considered as a bipartite network with a set

of recipes and a set of ingredients. An edge between a recipe and

an ingredient indicates that the recipe contains the corresponding

ingredient. Since each recipe belongs to one and only one regional

cuisine, the edges could be categorized into cuisines. Given a

cuisine c and an ingredient i, we use nci to denote the degree of

ingredient i, counted with edges in cuisine c. In other words, nci is

the number of recipes (in cuisine c) that use ingredient i.

Therefore, the ingredient-usage vector of regional cuisine c is

written in the following form:

fPcPc
~(pc1,p

c
2, . . . ,p

c
i , . . . ,p

c
n), ð1Þ

where pci~
nciP
i~1 n

c
i

is the probability of ingredient i appears in

cuisine c. For example, if recipes in a regional cuisine c use 1,000

ingredients (with duplicates) in total and ingredient i appears in 10

recipes in that cuisine, we have pci~
10

1000
.

Since common ingredients carry little information, we use an

ingredient-usage vector inspired by TF-IDF (Term Frequency

Inverse Document Frequency) [22]:

Pc
~(w1p

c
1,w2p

c
2, . . . ,wjp

c
i , . . . ,wnp

c
n), ð2Þ

where a prior weight wi~log

P
c

P
i n

c
iP

c n
c
i

is introduced to penalize a

popular ingredient. We use Pc for all calculations in this paper.

With this representation in hand, we quantify the similarity

between two cuisines using the Pearson correlation coefficient (Eq.

3) and cosine similarity (Eq. 4).

(i) Pearson product-moment correlation [23]: This metric

measures the extent to which a linear relationship is present

between the two vectors. It is defined as

Figure 1. Map of regional cuisines in China.
doi:10.1371/journal.pone.0079161.g001
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Figure 2. Probability distribution of the number of ingredients
per recipe. All regional cuisines show similar distributions, which have
a peak around 10.
doi:10.1371/journal.pone.0079161.g002

Geography and Similarity of Chinese Cuisines

PLOS ONE | www.plosone.org 2 November 2013 | Volume 8 | Issue 11 | e79161

“Geography and similarity of regional
cuisines in China”
Zhu et al.,
PLoS ONE, 8, e79161, 2013. [18]

 Fraction of ingredients
that appear in at least 𝑘
recipes.

 Oops in notation: 𝑃 (𝑘) is
the Complementary
Cumulative Distribution𝑃≥(𝑘)
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“On a class of skew distribution
functions”
Herbert A. Simon,
Biometrika, 42, 425–440, 1955. [15]

2 Power laws, Pareto distributions and Zipf’s law
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FIG. 1 Left: histogram of heights in centimetres of American males. Data from the National Health Examination Survey,
1959–1962 (US Department of Health and Human Services). Right: histogram of speeds in miles per hour of cars on UK
motorways. Data from Transport Statistics 2003 (UK Department for Transport).
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FIG. 2 Left: histogram of the populations of all US cities with population of 10 000 or more. Right: another histogram of the
same data, but plotted on logarithmic scales. The approximate straight-line form of the histogram in the right panel implies
that the distribution follows a power law. Data from the 2000 US Census.

is fixed, it is determined by the requirement that the
distribution p(x) sum to 1; see Section III.A.)

Power-law distributions occur in an extraordinarily di-
verse range of phenomena. In addition to city popula-
tions, the sizes of earthquakes [3], moon craters [4], solar
flares [5], computer files [6] and wars [7], the frequency of
use of words in any human language [2, 8], the frequency
of occurrence of personal names in most cultures [9], the
numbers of papers scientists write [10], the number of
citations received by papers [11], the number of hits on
web pages [12], the sales of books, music recordings and
almost every other branded commodity [13, 14], the num-
bers of species in biological taxa [15], people’s annual in-
comes [16] and a host of other variables all follow power-
law distributions.1

1 Power laws also occur in many situations other than the statis-

Power-law distributions are the subject of this arti-
cle. In the following sections, I discuss ways of detecting
power-law behaviour, give empirical evidence for power
laws in a variety of systems and describe some of the
mechanisms by which power-law behaviour can arise.

Readers interested in pursuing the subject further may
also wish to consult the reviews by Sornette [18] and
Mitzenmacher [19], as well as the bibliography by Li.2

tical distributions of quantities. For instance, Newton’s famous
1/r2 law for gravity has a power-law form with exponent α = 2.
While such laws are certainly interesting in their own way, they
are not the topic of this paper. Thus, for instance, there has
in recent years been some discussion of the “allometric” scal-
ing laws seen in the physiognomy and physiology of biological
organisms [17], but since these are not statistical distributions
they will not be discussed here.

2 http://linkage.rockefeller.edu/wli/zipf/.

“Power laws, Pareto distributions and Zipf’s
law”
M. E. J. Newman,
Contemporary Physics, 46, 323–351,
2005. [12]
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Power-Law Distributions in

Empirical Data∗

Aaron Clauset†

Cosma Rohilla Shalizi‡

M. E. J. Newman§

Abstract. Power-law distributions occur in many situations of scientific interest and have significant
consequences for our understanding of natural and man-made phenomena. Unfortunately,
the detection and characterization of power laws is complicated by the large fluctuations
that occur in the tail of the distribution—the part of the distribution representing large
but rare events—and by the difficulty of identifying the range over which power-law behav-
ior holds. Commonly used methods for analyzing power-law data, such as least-squares
fitting, can produce substantially inaccurate estimates of parameters for power-law dis-
tributions, and even in cases where such methods return accurate answers they are still
unsatisfactory because they give no indication of whether the data obey a power law at
all. Here we present a principled statistical framework for discerning and quantifying
power-law behavior in empirical data. Our approach combines maximum-likelihood fitting
methods with goodness-of-fit tests based on the Kolmogorov–Smirnov (KS) statistic and
likelihood ratios. We evaluate the effectiveness of the approach with tests on synthetic
data and give critical comparisons to previous approaches. We also apply the proposed
methods to twenty-four real-world data sets from a range of different disciplines, each of
which has been conjectured to follow a power-law distribution. In some cases we find these
conjectures to be consistent with the data, while in others the power law is ruled out.

Key words. power-law distributions, Pareto, Zipf, maximum likelihood, heavy-tailed distributions,
likelihood ratio test, model selection
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1. Introduction. Many empirical quantities cluster around a typical value. The

speeds of cars on a highway, the weights of apples in a store, air pressure, sea level,

the temperature in New York at noon on a midsummer’s day: all of these things vary

somewhat, but their distributions place a negligible amount of probability far from

the typical value, making the typical value representative of most observations. For

instance, it is a useful statement to say that an adult male American is about 180cm

tall because no one deviates very far from this height. Even the largest deviations,

which are exceptionally rare, are still only about a factor of two from the mean in
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“Power-law distributions in empirical
data”
Clauset, Shalizi, and Newman,
SIAM Review, 51, 661–703, 2009. [5]
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Size distributions:

Some examples:
 Earthquake magnitude (Gutenberg-Richter

law): [9, 1] 𝑃(𝑀) ∝ 𝑀−2
 # war deaths: [14] 𝑃 (𝑑) ∝ 𝑑−1.8
 Sizes of forest fires [8]

 Sizes of cities: [15] 𝑃 (𝑛) ∝ 𝑛−2.1
 # links to and from websites [2]

 Note: Exponents range in error
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Size distributions:
More examples:
 # citations to papers: [6, 7] 𝑃 (𝑘) ∝ 𝑘−3.
 Individual wealth (maybe): 𝑃 (𝑊) ∝ 𝑊 −2.
 Distributions of tree trunk diameters: 𝑃(𝑑) ∝ 𝑑−2.
 The gravitational force at a random point in the

universe: [10] 𝑃 (𝐹) ∝ 𝐹 −5/2. (See the Holtsmark
distribution and stable distributions.)

 Diameter of moon craters: [12] 𝑃 (𝑑) ∝ 𝑑−3.
 Word frequency: [15] e.g., 𝑃 (𝑘) ∝ 𝑘−2.2 (variable).
 # religious adherents in cults: [5] 𝑃(𝑘) ∝ 𝑘−1.8±0.1.
 # sightings of birds per species (North American

Breeding Bird Survey for 2003): [5]𝑃 (𝑘) ∝ 𝑘−2.1±0.1.
 # species per genus: [17, 15, 5] 𝑃 (𝑘) ∝ 𝑘−2.4±0.2.
Table 3 from Clauset, Shalizi, and Newman [5]:

                                                          

Basic parameters of the data sets described in section 6, along with their power-law fits and the corresponding p-values (statistically significant values
are denoted in bold).

Quantity n 〈x〉 σ xmax x̂min α̂ ntail p

count of word use 18 855 11.14 148.33 14 086 7 ± 2 1.95(2) 2958 ± 987 0.49

protein interaction degree 1846 2.34 3.05 56 5 ± 2 3.1(3) 204 ± 263 0.31

metabolic degree 1641 5.68 17.81 468 4 ± 1 2.8(1) 748 ± 136 0.00
Internet degree 22 688 5.63 37.83 2583 21 ± 9 2.12(9) 770 ± 1124 0.29

telephone calls received 51 360 423 3.88 179.09 375 746 120 ± 49 2.09(1) 102 592 ± 210 147 0.63

intensity of wars 115 15.70 49.97 382 2.1 ± 3.5 1.7(2) 70 ± 14 0.20

terrorist attack severity 9101 4.35 31.58 2749 12 ± 4 2.4(2) 547 ± 1663 0.68

HTTP size (kilobytes) 226 386 7.36 57.94 10 971 36.25 ± 22.74 2.48(5) 6794 ± 2232 0.00
species per genus 509 5.59 6.94 56 4 ± 2 2.4(2) 233 ± 138 0.10

bird species sightings 591 3384.36 10 952.34 138 705 6679 ± 2463 2.1(2) 66 ± 41 0.55

blackouts (×103) 211 253.87 610.31 7500 230 ± 90 2.3(3) 59 ± 35 0.62

sales of books (×103) 633 1986.67 1396.60 19 077 2400 ± 430 3.7(3) 139 ± 115 0.66

population of cities (×103) 19 447 9.00 77.83 8 009 52.46 ± 11.88 2.37(8) 580 ± 177 0.76

email address books size 4581 12.45 21.49 333 57 ± 21 3.5(6) 196 ± 449 0.16

forest fire size (acres) 203 785 0.90 20.99 4121 6324 ± 3487 2.2(3) 521 ± 6801 0.05
solar flare intensity 12 773 689.41 6520.59 231 300 323 ± 89 1.79(2) 1711 ± 384 1.00

quake intensity (×103) 19 302 24.54 563.83 63 096 0.794 ± 80.198 1.64(4) 11 697 ± 2159 0.00
religious followers (×106) 103 27.36 136.64 1050 3.85 ± 1.60 1.8(1) 39 ± 26 0.42

freq. of surnames (×103) 2753 50.59 113.99 2502 111.92 ± 40.67 2.5(2) 239 ± 215 0.20

net worth (mil. USD) 400 2388.69 4 167.35 46 000 900 ± 364 2.3(1) 302 ± 77 0.00
citations to papers 415 229 16.17 44.02 8904 160 ± 35 3.16(6) 3455 ± 1859 0.20

papers authored 401 445 7.21 16.52 1416 133 ± 13 4.3(1) 988 ± 377 0.90

hits to web sites 119 724 9.83 392.52 129 641 2 ± 13 1.81(8) 50 981 ± 16 898 0.00
links to web sites 241 428 853 9.15 106 871.65 1 199 466 3684 ± 151 2.336(9) 28 986 ± 1560 0.00

 We’ll explore various exponent measurement
techniques in assignments.
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power-law size distributions

Gaussians versus power-law size distributions:
 Mediocristan versus Extremistan
 Mild versus Wild (Mandelbrot)
 Example: Height versus wealth.

 See “The Black Swan” by Nassim
Taleb. [16]

 Terrible if successful framing:
Black swans are not that
surprising …
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Turkeys …

From “The Black Swan” [16]
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Taleb’s table [16]

Mediocristan/Extremistan
 Most typical member is mediocre/Most typical is either

giant or tiny

 Winners get a small segment/Winner take almost all
effects

 When you observe for a while, you know what’s going
on/It takes a very long time to figure out what’s going
on

 Prediction is easy/Prediction is hard

 History crawls/History makes jumps

 Tyranny of the collective/Tyranny of the rare and
accidental
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Size distributions:

Power-law size distributions are
sometimes called
Pareto distributions after Italian
scholar Vilfredo Pareto.

 Pareto noted wealth in Italy was
distributed unevenly (80–20 rule;
misleading).

 Term used especially by
practitioners of the Dismal
Science.
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Devilish power-law size distribution details:

Exhibit A:
 Given 𝑃(𝑥) = 𝑐𝑥−𝛾 with 0 < 𝑥min < 𝑥 < 𝑥max,

the mean is (𝛾 ≠ 2):⟨𝑥⟩ = 𝑐2 − 𝛾 (𝑥2−𝛾
max − 𝑥2−𝛾

min ) .
 Mean ‘blows up’ with upper cutoff if 𝛾 < 2.
 Mean depends on lower cutoff if 𝛾 > 2.
 𝛾 < 2: Typical sample is large.
 𝛾 > 2: Typical sample is small.

Insert question from assignment 2
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And in general …

Moments:
 All moments depend only on cutoffs.
 No internal scale that dominates/matters.
 Compare to a Gaussian, exponential, etc.

For many real size distributions: 2 < 𝛾 < 3
 mean is finite (depends on lower cutoff)
 𝜎2 = variance is ‘infinite’ (depends on upper cutoff)
 Width of distribution is ‘infinite’
 If 𝛾 > 3, distribution is less terrifying and may be

easily confused with other kinds of distributions.

Insert question from assignment 3
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Moments

Standard deviation is a mathematical
convenience:
 Variance is nice analytically …
 Another measure of distribution width:

Mean average deviation (MAD) = ⟨|𝑥 − ⟨𝑥⟩|⟩
 For a pure power law with 2 < 𝛾 < 3:⟨|𝑥 − ⟨𝑥⟩|⟩ is finite.

 But MAD is mildly unpleasant analytically …
 We still speak of infinite ‘width’ if 𝛾 < 3.
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How sample sizes grow …
Given 𝑃(𝑥) ∼ 𝑐𝑥−𝛾:
 We can show that after 𝑛 samples, we expect the

largest sample to be1𝑥1 ≳ 𝑐′𝑛1/(𝛾−1)
 Sampling from a finite-variance distribution gives

a much slower growth with 𝑛.
 e.g., for 𝑃 (𝑥) = 𝜆𝑒−𝜆𝑥, we find𝑥1 ≳ 1𝜆 ln𝑛.
Insert question from assignment 4
Insert question from assignment 6

1Later, we see that the largest sample grows as 𝑛𝜌 where 𝜌 is
the Zipf exponent
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 𝛾 = 5/2, maxima of 𝑁 samples, 𝑛 =1000 sets of
samples:
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 𝛾 = 5/2, maxima of 𝑁 samples, 𝑛 =1000 sets of
samples:
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 𝛾 = 5/2, maxima of 𝑁 samples, 𝑛 =1000 sets of
samples:
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 𝛾 = 3/2, maxima of 𝑁 samples, 𝑛 =1000 sets of
samples:
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 𝛾 = 3/2, maxima of 𝑁 samples, 𝑛 =1000 sets of
samples:
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 𝛾 = 3/2, maxima of 𝑁 samples, 𝑛 =1000 sets of
samples:
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 Scaling of expected largest value as a function of
sample size 𝑁 :
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 Fit for 𝛾 = 5/2:2𝑘max ∼ 𝑁0.660±0.066 (sublinear)
 Fit for 𝛾 = 3/2: 𝑘max ∼ 𝑁2.063±0.215 (superlinear)

295% confidence interval
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Complementary Cumulative Distribution Function:

CCDF:
 𝑃≥(𝑥) = 𝑃 (𝑥′ ≥ 𝑥) = 1 − 𝑃 (𝑥′ < 𝑥)
 = ∫∞𝑥′=𝑥 𝑃(𝑥′)d𝑥′
 ∝ ∫∞𝑥′=𝑥(𝑥′)−𝛾d𝑥′
 = 1−𝛾 + 1(𝑥′)−𝛾+1∣∞𝑥′=𝑥
 ∝ 𝑥−𝛾+1
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Complementary Cumulative Distribution Function:

CCDF:
 𝑃≥(𝑥) ∝ 𝑥−𝛾+1
 Use when tail of 𝑃 follows a power law.
 Increases exponent by one.
 Useful in cleaning up data.

PDF:
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Complementary Cumulative Distribution Function:

 Same story for a discrete variable: 𝑃 (𝑘) ∼ 𝑐𝑘−𝛾.
 𝑃≥(𝑘) = 𝑃 (𝑘′ ≥ 𝑘)

= ∞∑𝑘′=𝑘 𝑃 (𝑘)∝ 𝑘−𝛾+1
 Use integrals to approximate sums.
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Zipfian rank-frequency plots

George Kingsley Zipf:
 Noted various rank distributions

have power-law tails, often with exponent -1
(word frequency, city sizes, …)

 Zipf’s 1949 Magnum Opus:

 We’ll study Zipf’s law in depth …
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Zipfian rank-frequency plots

Zipf’s way:
 Given a collection of entities, rank them by size,

largest to smallest.
 𝑥𝑟 = the size of the 𝑟th ranked entity.
 𝑟 = 1 corresponds to the largest size.
 Example: 𝑥1 could be the frequency of occurrence

of the most common word in a text.
 Zipf’s observation: 𝑥𝑟 ∝ 𝑟−𝛼
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Nature (2014):
Most cited papers
of all time
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Size distributions:

Brown Corpus (1,015,945 words):

CCDF:
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 The, of, and, to, a, …= ‘objects’
 ‘Size’ = word frequency
 Beep: (Important) CCDF and Zipf plots are related

…
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Size distributions:

Brown Corpus (1,015,945 words):
CCDF:
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 The, of, and, to, a, …= ‘objects’
 ‘Size’ = word frequency
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Observe:
 𝑁𝑃≥(𝑥) = the number of objects with size at least 𝑥

where 𝑁 = total number of objects.

 If an object has size 𝑥𝑟, then 𝑁𝑃≥(𝑥𝑟) is its rank 𝑟.
 So 𝑥𝑟 ∝ 𝑟−𝛼 = (𝑁𝑃≥(𝑥𝑟))−𝛼

∝ 𝑥(−𝛾+1)(−𝛼)𝑟 since 𝑃≥(𝑥) ∼ 𝑥−𝛾+1.
We therefore have 1 = (−𝛾 + 1)(−𝛼) or:𝛼 = 1𝛾 − 1

 A rank distribution exponent of 𝛼 = 1 corresponds to a
size distribution exponent 𝛾 = 2.
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Zipf’s Law in the Popularity Distribution of Chess Openings
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We perform a quantitative analysis of extensive chess databases and show that the frequencies of

opening moves are distributed according to a power law with an exponent that increases linearly with the

game depth, whereas the pooled distribution of all opening weights follows Zipf’s law with universal

exponent. We propose a simple stochastic process that is able to capture the observed playing statistics and

show that the Zipf law arises from the self-similar nature of the game tree of chess. Thus, in the case of

hierarchical fragmentation the scaling is truly universal and independent of a particular generating

mechanism. Our findings are of relevance in general processes with composite decisions.

DOI: 10.1103/PhysRevLett.103.218701 PACS numbers: 89.20.�a, 05.40.�a, 89.75.Da

Decision making refers to situations where individuals

have to select a course of action among multiple alterna-

tives [1]. Such processes are ubiquitous, ranging from

one’s personal life to business, management, and politics,

and have a large part in shaping our life and society.

Decision making is an immensely complex process and,

given the number of factors that influence each choice, a

quantitative understanding in terms of statistical laws re-

mains a difficult and often elusive goal. Investigations are

complicated by the shortage of reliable data sets, since

information about human behavior is often difficult to be

quantified and not easily available in large numbers,

whereas decision processes typically involve a huge space

of possible courses of action. Board games, such as chess,

provide a well-documented case where the players in turn

select their next move among a set of possible game

continuations that are determined by the rules of the game.

Human fascination with the game of chess is long-

standing and pervasive [2], not least due to the sheer

infinite richness of the game. The total number of different

games that can be played, i.e., the game-tree complexity of

chess, has roughly been estimated as the average number of

legal moves in a chess position to the power of the length of

a typical game, yielding the Shannon number 3080 � 10
120

[3]. Obviously only a small fraction of all possible games

can be realized in actual play. But even during the first

moves of a game, when the game complexity is still

manageable, not all possibilities are explored equally

often. While the history of successful initial moves has

been classified in opening theory [4], not much is known

about the mechanisms underlying the formation of fashion-

able openings [5]. With the recent appearance of extensive

databases, playing habits have become accessible to quan-

titative analysis, making chess an ideal platform for ana-

lyzing human decision processes.

The set of all possible games can be represented by a

directed graph whose nodes are game situations and whose

edges correspond to legal moves from each position

(Fig. 1). Every opening is represented by its move se-

quence as a directed path starting from the initial node.

We will differentiate between two game situations if they

are reached by different move sequences. This way the

graph becomes a game tree, and each node � is uniquely

associated with an opening sequence.

Using a chess database [6] we can measure the popular-

ity n� or weight of every opening sequence as the number

of occurrences in the database. We find that the weighted

game tree of chess is self-similar and the frequencies SðnÞ
of weights follow a Zipf law [7]

SðnÞ � n�� (1)

with universal exponent� ¼ 2. Note, the precise scaling in

the histogram of weight frequencies SðnÞ and in the cumu-

lative distribution CðnÞ over the entire observable range

[Fig. 2(a)]. Similar power law distributions with universal

exponent have been identified in a large number of natural,

economic, and social systems [7–15]—a fact which has

come to known as the Zipf or Pareto law [7,8]. If we count

only the frequencies SdðnÞ of opening weights n� after the

first d moves we still find broad distributions consistent

with power law behavior SdðnÞ � n��d [Fig. 2(b)]. The

exponents �d are not universal, however, but increase

linearly with d [Fig. 2(b), inset). The results are robust:

similar power laws could be observed in different data-

bases and other board games, regardless of the considered

game depth, constraints on player levels or the decade

when the games were played. Stretching over 6 orders of

magnitude, the here-reported distributions are among the

most precise examples for power laws known today in

social data sets.

As seen in (Fig. 1) for each node � the weights of its

subtrees define a partition of the integers (1 . . . n�). The
assumption of self-similarity implies a statistical equiva-

lence of the branching in the nodes of the tree. We can thus

define the branching ratio distribution over the real interval

r 2 ½0; 1� by the probability QðrjnÞ that a random pick
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 Examined all games of varying game depth 𝑑 in a set of
chess databases.

 𝑛 = popularity = how many times a specific game path
appears in databases.

 𝑆(𝑛; 𝑑) = number of depth 𝑑 games with popularity 𝑛.
 Show “the frequencies of opening moves are

distributed according to a power law with an exponent
that increases linearly with the game depth, whereas
the pooled distribution of all opening weights follows
Zipf’s law with universal exponent.”

 Propose hierarchical fragmentation model that
produces self-similar game trees.
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FIG. 1 (color online). (a) Schematic representation of the

weighted game tree of chess based on the SCIDBASE [6] for the

first three half moves. Each node indicates a state of the game.

Possible game continuations are shown as solid lines together

with the branching ratios rd. Dotted lines symbolize other game

continuations, which are not shown. (b) Alternative representa-

tion emphasizing the successive segmentation of the set of

games, here indicated for games following a 1.d4 opening until

the fourth half move d ¼ 4. Each node # is represented by a box

of a size proportional to its frequency n#. In the subsequent half

move these games split into subsets (indicated vertically below)

according to the possible game continuations. Highlighted in (a)

and (b) is a popular opening sequence 1.d4 Nf6 2.c4 e6 (Indian

defense).
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FIG. 2 (color online). (a) Histogram of weight frequencies

SðnÞ of openings up to d ¼ 40 in the Scid database and with

logarithmic binning. A straight line fit (not shown) yields an

exponent of $ ¼ 2:05 with a goodness of fit R2 > 0:9992. For
comparison, the Zipf distribution Eq. (8) with % ¼ 1 is indicated

as a solid line. Inset: number CðnÞ ¼
P

N
m¼nþ1

SðmÞ of openings

with a popularity m> n. CðnÞ follows a power law with ex-

ponent $ ¼ 1:04 (R2 ¼ 0:994). (b) Number SdðnÞ of openings of
depth d with a given popularity n for d ¼ 16 and histograms

with logarithmic binning for d ¼ 4, d ¼ 16, and d ¼ 22. Solid

lines are regression lines to the logarithmically binned data

(R2 > 0:99 for d < 35). Inset: slope $d of the regression line

as a function of d and the analytical estimation Eq. (6) using

N ¼ 1:4' 10
6 and ! ¼ 0 (solid line).
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The Don.
Extreme deviations in test cricket:

1000 10 20 30 9040 50 60 70 80

 Don Bradman’s batting average
= 166% next best.

 That’s pretty solid.
 Later in the course: Understanding success—

is the Mona Lisa like Don Bradman?
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A good eye:
 The great Paul Kelly’s tribute to the man who

was “Something like the tide”
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