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1. 3+3+3)
Highly Optimized Tolerance:

This question is based on Carlson and Doyle's 1999 paper “Highly optimized

tolerance: A mechanism for power laws in design systems” [1]. In class, we made
our way through a discrete version of a toy HOT model of forest fires. This paper
revolves around the equivalent continuous model's derivation. You do not have to
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perform the derivation but rather carry out some manipulations of probability
distributions using their main formula.

Our interest is in Table | on p. 1415:
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and Equation 8 on the same page:
P-(A) = / p(x)dx =p> (p~ (A7),
pi(ATY)
where v = o+ 1/ and we'll write P> for Peypy,.
Please note that P5(A) for 2741 is not correct. Find the right one!

Here, A(x) is the area connected to the point x (think connected patch of trees
for forest fires). The cost of a ‘failure’ (e.g., lightning) beginning at x scales as
A(x)® which in turn occurs with probability p(x). The function p~! is the inverse
function of p.

Resources associated with point x are denoted as R(x) and area is assumed to
scale with resource as A(x) ~ R77(x).

Finally, p> is the complementary cumulative distribution function for p.

As per the table, determine p>(x) and P> (A) for the following (3 pts each):

(a) pla) = ca™@D,
(b) p(z) = ce™*, and
(c) p(z) = ce ™.

Note that these forms are for the tails of p only, and you should incorporate a
constant of proportionality ¢, which is not shown in the paper.

. The discrete version of HOT theory:

From lectures, we had the following.

Cost: Expected size of ‘fire’ in a d-dimensional lattice:
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where a; = area of ith site's region, and p; = avg. prob. of fire at site 7 over a
given time period.

The constraint for building and maintaining (d — 1)-dimensional firewalls in

d-dimensions is
Nsites
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where we are assuming isometry.

Using Lagrange Multipliers, safety goggles, rubber gloves, a pair of tongs, and a
maniacal laugh, determine that:
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A courageous coding festival:

Code up the discrete HOT model in 2-d. Let's see if we find any of these
super-duper power laws everyone keeps talking about. We'll follow the same
approach as the N = Lx L 2-d forest discussed in lectures.

Main goal: extract yield curves as a function of the design DD parameter as
described below.

Suggested simulations elements:

» Take L = 32 as a start. Once your code is running, see if L = 64, 128, or
more might be possible. (The original sets of papers used all three of these
values.) Use a value of L that's sufficiently large to produced useful statistics
but not prohibitively time consuming for simulations.

= Start with no trees.

= Probability of a spark at the (i, j)th site: P(i, ) oc e=/“e=7/* where (i, 7) is
tree position with the indices starting in the top left corner (i,7 =1 to L).
(You will need to normalize this properly.) The quantity £ is the
characteristic scale for this distribution. Try out ¢ = L/10.

» Consider a design problem of D =1, 2, L, and L?. (If L and L? are too
much, you can drop them. Perhaps sneak out to D = 3.) Recall that the
design problem is to test D randomly chosen placements of the next tree
against the spark distribution.

= For each test tree, compute the average forest fire size over the full spark
distribution:
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where S(i, j) is the size of the forest component at (i, j). Select the tree
location with the highest average yield and plant a tree there.

= Add trees until the 2-d forest is full, measuring average yield as a function of
trees added.

= Only trees within the cluster surrounding the ignited tree burn (trees are
connected through four nearest neighbors).

(a) Plot the forest at (approximate) peak yield.

(b) Plot the yield curves for each value of D, and identify (approximately) the
peak yield and the density for which peak yield occurs for each value of D.

(c) Plot distributions of tree component sizes S at peak yield. Note: You will
have to rebuild forests and stop at the peak yield value of D to find these
distributions. By recording the sequence of optimal tree planting, this can be
done without running the simulation again.

(d) Extra level: Plot size distributions for D = L? for varying tree densities
p =0.10,0.20,...,0.90. This will be an effort to reproduce Fig. 3b in [2].

Hint: Working on un-treed locations will make choosing the next location easier.
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