
Story?
C
o
P What’s

The

S

Principles of Complex Systems, CSYS/MATH 300
University of Vermont, Fall 2019

Assignment 6 • code name: Paradigms of Human Memory 

Dispersed: Thursday, October 3, 2019.
Due: Friday, October 18, by 11:59 pm, 2019.
Some useful reminders:
Deliverator: Dr. Nick Allgaier (nicholas.allgaier@uvm.edu)
Assistant Deliverator: David Dewhurst (david.dewhurst@uvm.edu)
Office: To be disclosed
Office hours: To be emphatically determined through a democratic process
Course website: http://www.uvm.edu/pdodds/teaching/courses/2019-08UVM-300
Bonus course notes: http://www.uvm.edu/pdodds/teaching/courses/2019-08UVM-
300/docs/dewhurst-pocs-notes.pdf

All parts are worth 3 points unless marked otherwise. Please show all your workingses clearly
and list the names of others with whom you collaborated.

Please obey the basic life rule: Never use Excel. Or any Microsoft product except maybe Xbox
(which sadly will likely not help you here.)

Graduate students are requested to use LATEX (or related TEX variant).

email submission: 1. Please send to david.dewhurst@uvm.edu.
2. PDF only! Please name your file as follows (where the number is to be padded by a 0 if less
than 10 and names are all lowercase): CSYS300assignment%02d$firstname-$lastname.pdf
as in CSYS300assignment06michael-palin.pdf

Please submit your project’s current draft in pdf format via email. Please use this file
name format (all lowercase after CSYS):
CSYS300project-$firstname-$lastname-YYYY-MM-DD.pdf as in
CSYS300project-lisa-simpson-1989-12-17.pdf where the date is the date of submission
(and not, say, your birthdate).

1. The 1-d theoretical percolation problem:
Consider an infinite 1-d lattice forest with a tree present at any site with
probability p.

1

https://www.youtube.com/watch?v=CFZB68gq_2s
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/teaching/courses/2019-08UVM-300
http://www.uvm.edu/pdodds/teaching/courses/2019-08UVM-300/docs/dewhurst-pocs-notes.pdf
http://www.uvm.edu/pdodds/teaching/courses/2019-08UVM-300/docs/dewhurst-pocs-notes.pdf

(a) Find the distribution of forest sizes as a function of p. Do this by moving
along the 1-d world and figuring out the probability that any forest you enter
will extend for a total length ℓ.

(b) Find pc, the critical probability for which a giant component exists.
Hint: One way to find critical points is to determine when certain average
quantities explode. Compute ⟨l⟩ and find p such that this expression goes
boom (if it does).

2. Show analytically that the critical probability for site percolation on a triangular
lattice is pc = 1/2.
Hint—Real-space renormalization gets it done.:
http://www.youtube.com/watch?v=JlkbU5U7QqU

3. (3 + 3)
Coding, it’s what’s for breakfast:

(a) Percolation in two dimensions (2-d) on a simple square lattice provides a
classic, nutritious example of a phase transition.
Your mission, whether or not you choose to accept it, is to code up and
analyse the L by L square lattice percolation model for varying L.
Take L = 20, 50, 100, 200, 500, and 1000.
(Go higher if you feel L = 1000 is for mere mortals.)
(Go lower if your code explodes.)
Let’s continue with the tree obsession. A site has a tree with probability p,
and a sheep grazing on what’s left of a tree with probability 1− p.
Forests are defined as any connected component of trees bordered by sheep,
where connections are possible with a site’s four nearest neighbors on a
lattice.
Each square lattice is to be considered as a landscape on which forests and
sheep co-exist.
Do not bagelize (or doughnutize) the landscape (no periodic boundary
conditions—boundaries are boundaries).
(Note: this set up is called site percolation. Bond percolation is the alternate
case when all links between neighboring sites exist with probability p.)
Steps:

i. For each L, run Ntests=100 tests for occupation probability p moving
from 0 to 1 in increments of 10−2. (As for L, you may use a smaller or
larger increment depending on how things go.)

2

http://www.youtube.com/watch?v=JlkbU5U7QqU

ii. Determine the fractional size of the largest connected forest for each of
the Ntests, and find the average of these, Savg.

iii. On a single figure, for each L, plot the average Savg as a function of p.
(b) Comment on how Savg(p;N) changes as a function of L and estimate the

critical probability pc (the percolation threshold).

Helpful reuse of code (intended for black and white image analysis): You can use
Matlab’s bwconncomp to find the sizes of components. Very nice.

4. (3 + 3)

(a) Using your model from the previous question and your estimate of pc, plot
the distribution of forest sizes (meaning cluster sizes) for p ≃ pc for the
largest L your code and psychological makeup can withstand. (You can
average the distribution over separate simulations.)
Comment on what kind of distribution you find.

(b) Repeat the above for p = pc/2 and p = pc + (1− pc)/2, i.e., well below and
well above pc.
Produce plots for both cases, and again, comment on what you find.

5. (3 + 3)
Repeat of the last question from Assignment 4, changing from γ = 5/2 to
γ = 3/2. Now 1 < γ < 2 so we should see a very different behavior.
You should be able to reuse everything you set up for Assignment 4.
Here’s the question reprinted with γ switched.
For γ = 3/2, generate n = 1000 sets each of N = 10, 102, 103, 104, 105, and 106

samples, using Pk = ck−3/2 with k = 1, 2, 3, . . .

How do we computationally sample from a discrete probability distribution?
Hint: You can use a continuum approximation to speed things up. In fact, taking
the exact continuum version from the first two assignments will work.

(a) For each value of sample size N , plot the maximum value of the n = 1000

samples as a function of sample number (which is not the sample size N).
So you should have kmax for i = 1, 2, . . . , n where i is sample number. These
plots should give a sense of the unevenness of the maximum value of k, a
feature of power-law size distributions.

3

(b) For each set, find the maximum value. Then find the average maximum
value for each N . Plot ⟨kmax⟩ as a function of N and calculate the scaling
using least squares.
Does your scaling match up with your theoretical estimate?

How to sample from your power law distribution (and kinds of beasts):
We now turn our problem of randomly selecting from this distribution into
randomly selecting from the uniform distribution. After playing around a little,
k = 106 seems like a good upper limit for the number of samples we’re talking
about.
Using Matlab (or some ghastly alternative), we create a cdf for Pk for
k = 1, 2, . . . , 106 and one final entry k > 106 (for which the cdf will be 1).
We generate a random number x and find the value of k for which the cdf is the
first to meet or exceed x. This gives us our sample k according to Pk and we
repeat as needed. We would use the exactly normalized Pk =

1
ζ(3/2)

k−3/2 where ζ

is the Riemann zeta function.
Now, we can use a quick and dirty method by approximating Pk with a continuous
function P (z) = (γ − 1)z−γ for z ≥ 1 (we have used the normalization coefficient
found in assignment 1 for a = 1 and b = ∞). Writing F (z) as the cdf for P (z),
we have F (z) = 1− z−(γ−1) = 1− z−1/2. Inverting, we obtain z = [1− F (z)]−2.
We replace F (z) with our random number x and round the value of z to finally
get an estimate of k.

4

