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- Random dirécfed networks:

&X/ Ko

So far, we've largely studied networks with
undirected, unweighted edges.

COcoNuTS

Directed random’

Mixed random
networks
Definition

Correlations

Mixed Random
Network
Contag\on

g probabilities
Nutshell

References

UNIV]ZI(hIn | |
o VERMONT

Qv 70f35


http://www.uvm.edu
http://www.uvm.edu/pdodds

- Random directed networks:

»%’ K.

So far, we've largely studied networks with
undirected, unweighted edges.

Now consider directed, unweighted edges.

COcoNuTS

Directed random’

Mixed random
networks
Definition

Correlations

Mixed Random
Network
Contagion

Nutshell

References

The O
ﬁ UNIVERSITY |§|
il ¥ VERMONT 1O

DA 70f35


http://www.uvm.edu
http://www.uvm.edu/pdodds

Random directed networks:

So far, we've largely studied networks with
% undirected, unweighted edges.
Now consider directed, unweighted edges.

% Nodes have k; and k, incoming and outgoing
edges, otherwise random.
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Random directed networks:

So far, we've largely studied networks with
% undirected, unweighted edges.

Now consider directed, unweighted edges.
\% Nodes have k; and k, incoming and outgoing

edges, otherwise random.

Network defined by joint in- and out-degree
distribution: P, ;.
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Random directed networks:

So far, we've largely studied networks with
% undirected, unweighted edges.
Now consider directed, unweighted edges.
\5\/{” Nodes have k; and k, incoming and outgoing
edges, otherwise random.
Network defined by joint in- and out-degree
distribution: P, ;.

Notmiglization: 7, ey 1o Py . —1
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- Random directed networks:

So far, we've largely studied networks with
% undirected, unweighted edges.
Now consider directed, unweighted edges.
\5\/{” Nodes have k; and k, incoming and outgoing
> edges, otherwise random.
Network defined by joint in- and out-degree
distribution: P, ;.
Noreralization: oy, e Sro Py | —1
Marginal in-degree and out-degree distributions:

o0 o
Pki = Z Pkivko and Pko = Z Pkiak"o
ko=0 k=0
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Random directed networks: COcoNLTS
So far, we've largely studied networks with e
}% undirected, unweighted edges. Aetabier
Now consider directed, unweighted edges. it b
% Nodes have k; and k, incoming and outgoing
edges, otherwise random. Mixed Random
Cantagion
Network defined by joint in- and out-degree ARSI
dlStrIbUtIOﬂ: Pki’ko Trigge probabilities.
Nutshell

Normalization: Y ° />°° Py 1
(mE oy 7 2

References

Marginal in-degree and out-degree distributions:
o0 o
Pki = Z Pkivko and Pko = Z Pkiak:o %
ko=0 k=0 ?%/7, G
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Directed network structure:

COcoNuTS
GWCC = Giant Weakly Directed random -
& Connected Component networks
«® > (directions removed); i ok ik
< ) networks
~— = Definition
owee Sl GIN = Giant
/ 6N Gsce GoUT |n-C0mp0nent; Mixed Random
- /-/Aﬁ/f“\\ Network
i = = GOUT = Giant i el
\ e = y Out-Component; gt
R - s
B ol GSCC = Giant Strongly Nutshell

Connected Component; References

From Bogufia and Serano. ! DC = Disconnected
Components (finite).
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Directed network structure: B

GWCC = Giant Weakly Directed random*

i Connected Component Detworks
- (directions removed); BERE
(,,) /_\) \‘w‘eTwo‘r ks
s . © GIN = Giant Shm
//C/Eaiic\c/,—fgm\‘\ \\\\ |n-C0mp0nent; w;ﬁ;lrrndorn
<<= 2 Y
\ Tendril| = <@) = ,\L ) GOUT = Giant C[?r,‘l‘iff‘[)‘(] 5!
e \.// <’::|‘ 5 r\,‘k ‘H‘(‘ "‘H,
. t\@/ﬁ/ Out-Component; o
\\\_ il GSCC = Giant Strongly Nutshell
Connected Component; References
From Bogufia and Serano. ! DC = Disconnected
Components (finite).
When moving through a family of increasingly %v%

connected directed random networks, GWCC
usually appears before GIN, GOUT, and GSCC 2
which tend to appear together. ' '/ 1 e
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Importaht observation:

& Directed and undirected random networks are
separate families ...
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Importaht observation:

Directed and undirected random networks are
separate families ...

...and analyses are also disjoint.
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Directed and undirected random networks are
separate families ...

...and analyses are also disjoint.

Need to examine a larger family of random networks
with mixed directed and undirected edges.
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Directed and undirected random networks are
separate families ...

...and analyses are also disjoint.

Need to examine a larger family of random networks
with mixed directed and undirected edges.

Consider nodes with three types of
edges:

1. k, undirected edges,
2. k;incoming directed edges,
3. k, outgoing directed edges.
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Directed and undirected random networks are
separate families ...

...and analyses are also disjoint.

Need to examine a larger family of random networks
with mixed directed and undirected edges.

Consider nodes with three types of
edges:

1. k, undirected edges,
2. k;incoming directed edges,
3. k, outgoing directed edges.

Define a node by generalized degree:

E=lky ki k|
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Joint degree distribution:

P; where k = [k, k;
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Joint degree distribution:
P; where k= [k, k k.

As for directed networks, require in- and
out-degree averages to match up:

(= 2 > D HE = DT> A RE - (k)
k=0 k=0 k,=0 k=0 k;=0 k,=0

Otherwise, no other restrictions and connections
are random.
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Joint degree distribution:
P; where k= [k, k k.

As for directed networks, require in- and
out-degree averages to match up:

By = 30 > S BRSNS ()
k=0 k=0 k,=0 k=0 k;=0 k,=0

Otherwise, no other restrictions and connections
are random.

Directed and undirected random networks are
disjoint subfamilies:

Undirected: P, = Py 6y o0y 0

Directed: P, = 0y, 0P .-
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Correlations:

Now add correlations (two point or Markovian) [:

1. PU(k|E’) = probability that an undirected edge
leaving a degree &’ nodes arrives at a degree k
node.
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Correlations:

Now add correlations (two point or Markovian) [:

1. PW(%|k’) = probability that an undirected edge
leaving a degree k’ nodes arrives at a degree k
node.

2. PO(k|E’) = probability that an edge leaving a
degree &’ nodes arrives at a degree k node is an
in-directed edge relative to the destination node.
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COcoNuTS

Correlations:

Directed random

Now add correlations (two point or Markovian) [: negWorks

1. PW(k|k’) = probability that an undirected edge gt
leaving a degree k’ nodes arrives at a degree k e
noldg' = Mixed Random

2. PO(E| k:) = probability that an edgeleaving a Qf:ffﬁ!fm
degree K’ nodes arrives at a degree k node is an A
in-directed edge relative to the destination node. R e

3. PO(k| k") = probability that an edge leaving a Nutshell
degree k’ nodes arrives at a degree k node is an References

out-directed edge relative to the destination node.
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COcoNuTS

Correlations:

Directed random

Now add correlations (two point or Markovian) [: negWorks

1. PY(k|E’) = probability that an undirected edge aighosh d
leaving a degree &’ nodes arrives at a degree k e
noAd@; = Mixed Random

2. PO(E| k:) = probability that an edgeleaving a @fifffi;in
degree k’ nodes arrives at a degree k node is an A
in-directed edge relative to the destination node. Trigering probabic

3. PO(k| k") = probability that an edge leaving a Nutshell
degree k’ nodes arrives at a degree k node is an References

out-directed edge relative to the destination node.

Now require more refined (detailed) balance.
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Correlations:

COcoNuTS
7 . § Directed random
Now add correlations (two point or Markovian) [: negWorks
1. PY(k|E’) = probability that an undirected edge et ]
leaving a degree &’ nodes arrives at a degree k Stk
nOde' Mixed Random
VLB = ili i etwor
2: PO(E| ]i) = probab|!|ty that an edgeqleavmg.a Qm‘wf)”
degree k’ nodes arrives at a degree k node is an eringenfs
in-directed edge relative to the destination node. Tk prolanii
3. PO(k|k’) = probability that an edge leaving a Nutshell
degree k' nodes arrives at a degree k node is an References

out-directed edge relative to the destination node.

Now require more refined (detailed) balance.
Conditional probabilities cannot be arbitrary. o %
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Correlations:

COcoNuTS
7 ; § Directed random
Now add correlations (two point or Markovian) [: negWorks
1. PY(k|E’) = probability that an undirected edge et ]
leaving a degree k’ nodes arrives at a degree k Sl
nOAde. Mixed Random
2: PO(E| k:) = probab|!|ty that an edgeqleavmg.a @fif[fﬁ!ﬁn
degree K’ nodes arrives at a degree k node is an e
in-directed edge relative to the destination node. Tk prolanii
3. PO(k|k’) = probability that an edge leaving a Nutshell
degree k' nodes arrives at a degree k node is an References
out-directed edge relative to the destination node.
Now require more refined (detailed) balance.
Conditional probabilities cannot be arbitrary. %
1. PU(%| k") must be related to PW(E’ | k). £
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COcoNuTS

Correlations:

Directed random

Now add correlations (two point or Markovian) [: networks
1. PY(k|E’) = probability that an undirected edge et ]
leaving a degree k’ nodes arrives at a degree k b

nOAdg- = Mixed Random
2: PO(E| k:) = probability that an edgeleaV|ng a ij;{g;ﬁm
degree K’ nodes arrives at a degree k node is an e
in-directed edge relative to the destination node. Triggering pralabi
3. PO(k|k’) = probability that an edge leaving a Nutshell
degree &’ nodes arrives at a degree k node is an References
out-directed edge relative to the destination node.
Now require more refined (detailed) balance.
Conditional probabilities cannot be arbitrary. %
1. PY(k| k") must be related to PM(E’ | k). £
2. PO(k|k")and PU(k| k") must be connected.
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' Correlations—Undirected edge balance:

Randomly choose an edge, and randomly choose
one end.

Say we find a degree k node at this end, and a
degree £’ node at the other end.
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' Correlations—Undirected edge balance:

Randomly choose an edge, and randomly choose
one end.

Say we find a degree k node at this end, and a
degree £’ node at the other end.

Define probability this happens as PW(k, k).
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' Correlations—Undirected edge balance:

Randomly choose an edge, and randomly choose

one end.

Say we find a degree k node at this end, and a

degree k&’ node at the other end.
Define probability this happens as P
Observe we must have PW(k, k') =

-

(k
et e

)

%
=

K

1
k).
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~ Correlations—Directed edge balance:
The quantities

koP(E) o kiP(E)
(ko) (i)

give the probabilities that in
starting at a random end of a
randomly selected edge, we
__begin at a degree k node and
then find ourselves travelling:

1. along an outgoing edge, or

2. against the direction of an incoming edge.
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Correlations—Directed edge balance:

The quantities
ko P (F) kiP(k)
and
(o) (ki)

give the probabilities that in

starting at a random end of a

randomly selected edge, we

begin at a degree k node and
then find ourselves travelling:

1. along an outgoing edge, or
2. against the direction of an incoming edge.

We therefore have

PO = b

koP (k')
(k¢

(o]

P e

k. P(k)
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~ Correlations—Directed edge balance:
The quantities

koP(R) o kiP(E)
(ko) (i)

give the probabilities that in
starting at a random end of a
randomly selected edge, we
begin at a degree k node and

then find ourselves travelling:
| 1. along an outgoing edge, or
2. against the direction of an incoming edge.

We therefore have
k,P(K)
(k&)

= PO/ 17%)L

PO = b

Note that P9 (%, k) and P9" (% k) are in general

not related if i + k.
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Global spreading condition:

T

- When are cascades possible?:
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Global sprea“diing condition: ¥

Consider uncorrelated mixed networks first.
Recall our first result for undirected random

networks, that edge gain ratio must exceed 1:
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Global spreading condition:

Consider uncorrelated mixed networks first.
Recall our first result for undirected random

networks, that edge gain ratio must exceed 1:

- kquzu
R= ZZ:O ) o {(hir—dyeb s> 1

&

Similar form for purely directed networks:

o kP
=k ek o By 4> L
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COcoNuTS

 Global spreading condition:

Directed random
networks

Consider uncorrelated mixed networks first.
Mixed random

Recall our first result for undirected random BB
networks, that edge gain ratio must exceed 1:

Mixed Random
]{7 Network

22 P gntagion
R:Z gkl;“o(ku—l)oBkml>l. e
k,=0 \'U
Nutshell
Similar form for purely directed networks: References
SN SRl
ki=0 k,=0 i %
Both are composed of (1) probability of ;}K
connection to a node of a given type; (2) number ¢
of newly infected edges if successful; and (3) Ao @

probability of infection. Sac 170f35
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Global spreading condition:

Define number of infected edges leading to nodes
a distance d away from the original seed as f(d).
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‘G‘Iobal spfea“diing condition:

Define number of infected edges leading to nodes
a distance d away from the original seed as f(d).

Infected edge growth equation:

f(d+1) = Rf(d).
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Global spfeading condition:

Define number of infected edges leading to nodes
a distance d away from the original seed as f(d).

Infected edge growth equation:

f(d+1) = Rf(d).

Applies for discrete time and continuous time
contagion processes.
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- Global spfeading condition:

Define number of infected edges leading to nodes
a distance d away from the original seed as f(d).

Infected edge growth equation:

f(d+1) =Rf(d).
Applies for discrete time and continuous time
contagion processes.

Now see B, , is the probability that an infected
edge eventually infects a node.
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- Global spfeading condition:

Define number of infected edges leading to nodes
a distance d away from the original seed as f(d).

Infected edge growth equation:

f(d+1) = Rf(d).

Applies for discrete time and continuous time
contagion processes.

Now see B, , is the probability that an infected
edge eventually infects a node.

Also allows for recovery of nodes (SIR).
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Global spreading condition:

Mixed, uncorrelated random netwoks:

<= Now have two types of edges spreading infection:

directed and undirected.
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Global spfeading condition:

Now have two types of edges spreading infection:

directed and undirected.
Gain ratio now more complicated:
1. Infected directed edges can lead to infected
directed or undirected edges.

2. Infected undirected edges can lead to infected
directed or undirected edges.
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- Global spfeading condition:

Now have two types of edges spreading infection:
directed and undirected.
Gain ratio now more complicated:

1. Infected directed edges can lead to infected
directed or undirected edges.

2. Infected undirected edges can lead to infected
directed or undirected edges.

Define fW(d) and f©(d) as the expected number
of infected undirected and directed edges leading
to nodes a distance d from seed.
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Gain ratio now has a matrix form:
fOa+1) ] o [ A%
SR Ta e Ct i s (0



Gain ratio now has a matrix form:

| fotatn | =R ] o |

Two separate gain equations:

ko P; kP
1) — Z [ <l;€ >k o(ky,—1)e Bku+ki,1f(u)(d> g <Ik'>k okye Bku+k,,1f(o)(




Gain ratio now has a matrix form:

| fotatn | =R ] o |

Two separate gain equations:
kil

g 2
1) = Z [ o) o(k,—1)e Bku+ki,1f(u)(d> g <Ik'>k okye Bku+k,,1f(o)(

ki P,
= FO(d)
<k7|> o ky+ki,1
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Gain ratio now has a matrix form:

| fotatn | =R | o |

Two separate gain equations:

ko P; ki P,
(el — Z [ {;ﬂ >k o(ky,—1)e Bku+ki,1f(u)(d> i <Ik'>k okye Bku+k,,1f(o)(

ky P, ki P,
fO>d+1) = Z [ <L;€ >k ® koBi i1 FU(d) + <Ik:.>k o koo By i1 f(d)

Gain ratio matrix:

R= i (kg B
Z[ ky Ic.k. ’?i]:ik.k.o ® Dpitki,1




Gain ratio now has a matrix form:

| fotatn | =R | o |

Two separate gain equations:

ko P; ki P,
(el — Z [ {;ﬂ >k o(ky,—1)e Bku+ki,1f(u)(d> i <Ik'>k okye Bku+k,,1f(o)(

ko ki Py
L R [ i ® BBy 1 Q) + S oo # By 2 £O(d)
3. u |
Gain ratio matrix:
o(k,—1) ok,
R= < > B
Z [ ky Ic.k. k<1£; .k' e Ktk

Spreading condition: max eigenvalue of R > 1.



Global spfea'di»ng condition:

Useful change of notation for making results more

general: write P (R | x) = T4k

PO ) = k,fk where x indicates the starting
node’s degree is irrelevant (no correlations).
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COcoNuTS

~ Global spreading condition:

Directed random
networks

Useful change of notation for making results more

general: write P (k| ) = kk];k and Mrilj
PO ) = ’?,Sk where x indicates the starting h’qk‘:mmom
node’s degree is irrelevant (no correlations). ?ffi,wiifln
Also write B, , . toindicate a more general S
infection probability, but one that does not Dhaeeing prollieg
Nutshell

depend on the edge’s origin.
References
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- Summary of contagion conditions for
uncorrelated networks:

<% |. Undirected, Uncorrelated—f(d + 1) = f(d):
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Correlated version:

Now have to think of transfer of infection from
edges emanating from degree k£’ nodes to edges
emanating from degree k nodes.
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- Correlated version:

Now have to think of transfer of infection from
edges emanating from degree k£’ nodes to edges
emanating from degree k nodes.

Replace P (% | %) with PO (k| %’) and so on.
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- Correlated version:

Now have to think of transfer of infection from
edges emanating from degree k£’ nodes to edges
emanating from degree k nodes.

Replace P (% | %) with PO (k| %’) and so on.

Edge types are now more diverse beyond directed
and undirected as originating node type matters.
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- Correlated version:

Now have to think of transfer of infection from
edges emanating from degree k£’ nodes to edges
emanating from degree k nodes.

Replace P (% | %) with PO (k| %’) and so on.

Edge types are now more diverse beyond directed
and undirected as originating node type matters.
Sums are now over k.
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- Full generalization:

a = W, X)

R,/ is the gain ratio
matrix and has the form:
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Full generalization:

e (V’, )\/)

R,/ is the gain ratio
matrix and has the form:

R&&/ = Pdd/ .kdd’ .B&d"

P, = conditional probability that a type \” edge
emanating from a type v’ node leads to a type v
node.
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COcoNuTS

- Full generalization:

e (V’, )\/)

f& (d + 1) = Z R&&, f&,(d> Directed random'*

)\/ —7 networks
a= (1/ )\) s Mixed random
3t : . . 3 networks
R,/ is the gain ratio
matrix and has the form:
o )\ Mixed Random
Network

Cantagion
R&&/ = Pdd/ ([ ] kdd’ (] B&d/’ Spreading condition

Full generalization

P, = conditional probability that a type \” edge

emanating from a type v’ node leads to a type v i S

node. Sbitt

k44 = potential number of newly infected edges

of type A emanating from nodes of type v. %
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- Full generalization:

e (V’, )\/)

R,/ is the gain ratio
matrix and has the form:

Rd&’ = Pdd/ .kdd’ .B&d/'

P, = conditional probability that a type \” edge
emanating from a type v’ node leads to a type v

node.

k44 = potential number of newly infected edges
of type A emanating from nodes of type v.

B, 4 = probability that a type v node is eventually
infected by a single infected type )\’ link arriving
from a neighboring node of type /.
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Full generalization:

e (V’, )\/)

R,/ is the gain ratio
matrix and has the form:

Rd&’ = Pdd/ .kdd’ .de/.

P, = conditional probability that a type \” edge
emanating from a type v’ node leads to a type v

node.

k44 = potential number of newly infected edges
of type A emanating from nodes of type v.

B, 4 = probability that a type v node is eventually
infected by a single infected type )\’ link arriving
from a neighboring node of type /.

Generalized contagion condition:

max|u|:p € o (R) > 1
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As we saw earlier, the triggering probability for simple
contagion on random networks can be determined
with a straightforward physical argument.
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As we saw earlier, the triggering probability for simple
contagion on random networks can be determined
with a straightforward physical argument.

Two good things:

- k;Pk i g & it : k-1
Qtrig = ’;) <k> Bkl [1 (1 Qtrlg) } )

Ptrig = Strig Z Pk Qtng) ] 3
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As we saw earlier, the triggering probability for simple
contagion on random networks can be determined
with a straightforward physical argument.

Two good things:

kP, k-1
O Z <k>k e B, e [1 — (1 oF Qtrig) } )

k=0

Ptrig = Strig Z Pk Qtng) ] 3

Equivalent to result found via the eldritch route of
generating functions.
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As we saw earlier, the triggering probability for simple
contagion on random networks can be determined
with a straightforward physical argument.

Two good things:

kP, k-1
O Z <k>k e B, e [1 — (1 oF Qtrig) } )

k=0

Ptrig = Strig Z Pk Qtng) ] 3

Equivalent to result found via the eldritch route of
generating functions.

Generating functions arguably make some kinds of
calculations easier (but perhaps we don't care about
component sizes that much).
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As we saw earlier, the triggering probability for simple
contagion on random networks can be determined
with a straightforward physical argument.

Two good things:

kP, k-1
O Z <k>k e B, e [1 — (1 oF Qtrig) } )

k=0

Ptrig = Strig Z Pk Qtng) ] 3

Equivalent to result found via the eldritch route of
generating functions.

Generating functions arguably make some kinds of
calculations easier (but perhaps we don't care about
component sizes that much).

On the other hand, a plainspoken physical argument

helps us generalize to correlated networks more easily.
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.
|

' Summary of triggering probabilities for
uncorrelated networks: ' [J

e
‘r &= |. Undirected, Uncorrelated—

| Qtng ZPU) k/ Bk 1 [1 _( _Qtrig)ka_l]

k. Pig = Strig = Z P(ky) [1 P Qtrig)ka]
| -




I. Undirected, Uncorrelated—

Qtng Z P Bk 1 [1 % (1 = Qtng) 1]

Ptrig i Strig 7 Z P(kil) [1 1 (1 b ng)kﬂ]
o

Il. Directed, Uncorrelated—

Qtng Z Pu) k(ak/| )Bk’ [ _(1_Qtrig)ké]

ki, Kk

Strig Z Pk/ k/ [ L *Qtrig)kg]

ki, K



I1l. Mixed Directed and Undirected, Uncorrelated—

trlg Z Bt

trlg Z i5ld k/
Strig S Z P<k/> [
%

[ (1 ik Qtrlg)

ey

(0) \ kg
Qtrig) O]

[1 o (1 i ng) (1 65T ng) ]
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trig
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Mixed, correlated random networks with
undirected and directed edges form natural
inclusive generalization of purely undirected and
purely directed random networks.

COcoNuTS

Directed random
networks

Mixed random
networks
Definition

Mixed Random
Network
Cantagion

Spreading condition

riggering probabilities
Nutshell

References

The O
i UNIVERSITY |§|
il ¥ VERMONT 1O

A 330f35


http://www.uvm.edu
http://www.uvm.edu/pdodds

Mixed, correlated random networks with
undirected and directed edges form natural
inclusive generalization of purely undirected and
purely directed random networks.

Spreading conditions and triggering probabilities
of contagion processes can be determined using a
direct, physical approach.
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Mixed, correlated random networks with
undirected and directed edges form natural
inclusive generalization of purely undirected and
purely directed random networks.

Spreading conditions and triggering probabilities
of contagion processes can be determined using a
direct, physical approach.

These conditions can be generalized to arbitrary
random networks with arbitrary node and edge

types.
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Mixed, correlated random networks with
undirected and directed edges form natural
inclusive generalization of purely undirected and
purely directed random networks.

Spreading conditions and triggering probabilities
of contagion processes can be determined using a
direct, physical approach.

These conditions can be generalized to arbitrary
random networks with arbitrary node and edge

types.
More generalizations: bipartite affiliation graphs
and multilayer networks.
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