

Complex Networks, CSYS/MATH 303 University of Vermont, Spring 2018 Assignment 4 - code name: Haggle properly [J

Dispersed: Saturday, February 10, 2018.
Due: Friday, February 23, by $11: 59$ pm, 2018.
Last updated: Thursday, April 5, 2018, 02:37 pm
Some useful reminders:
Deliverator: Peter Dodds
Office: Farrell Hall, second floor, Trinity Campus
E-mail: pdodds+coconuts@uvm.edu
Office hours: 10:05 am to $12: 00 \mathrm{pm}$, Tuesday and Thursday
Course website: http://www.uvm.edu/pdodds/teaching/courses/2018-01UVM-303
All parts are worth 3 points unless marked otherwise. Please show all your workingses clearly and list the names of others with whom you collaborated.

Graduate students are requested to use $A \mathbb{A} T_{E X}$ (or related $T_{E X}$ variant).
Email submission: PDF only! Please name your file as follows (where the number is to be padded by a 0 if less than 10 and names are all lowercase):
CSYS303assignment\%02d\$firstname-\$lastname.pdf as in CSYS303assignment06michael-palin.pdf

Please submit your project's current draft in pdf format via email. Please use this file name format (all lowercase after CSYS):
CSYS303project-\$firstname-\$lastname-YYYY-MM-DD.pdf as in CSYS303project-lisa-simpson-1989-12-17.pdf

Supply networks and allometry:

1. $(3+3$ points $)$

This question's calculation is a specific, exactly-solvable case of the general result that you'll will attack (with optional relish and other condiments) in the following question.
Consider a set of rectangular areas with side lengths L_{1} and L_{2} such that $L_{1} \propto A^{\gamma_{1}}$ and $L_{2} \propto A^{\gamma_{2}}$ where A is area and $\gamma_{1}+\gamma_{2}=1$. Assume $\gamma_{1}>\gamma_{2}$ and that $\epsilon=0$.

Now imagine that material has to be distributed from a central source in each of these areas to sinks distributed with density $\rho(A)$, and that these sinks draw the same amount of material per unit time independent of L_{1} and L_{2}.
(a) Find an exact form for how the volume of the most efficient distribution network scales with overall area $A=L_{1} L_{2}$. (Hint: you will have to set up a double integration over the rectangle.)
(b) If network volume must remain a constant fraction of overall area, determine the maximal scaling of sink density ρ with A.

Extra hints:

- Integrate over triangles as follows.
- You need to only perform calculations for one triangle.

2. From lectures on Supply Networks:

Show that for large V and $0<\epsilon<1 / 2$

$$
\min V_{\mathrm{net}} \propto \int_{\Omega_{d, D}(V)} \rho\|\vec{x}\|^{1-2 \epsilon} \mathrm{~d} \vec{x} \sim \rho V^{1+\gamma_{\max }(1-2 \epsilon)}
$$

Reminders: we defined $L_{i}=c_{i}^{-1} V^{\gamma_{i}}$ where $\gamma_{1}+\gamma_{2}+\ldots+\gamma_{d}=1$, $\gamma_{1}=\gamma_{\max } \geq \gamma_{2} \geq \ldots \geq \gamma_{d}$, and $c=\prod_{i} c_{i} \leq 1$ is a shape factor.

Assume the first k lengths scale in the same way with $\gamma_{1}=\ldots=\gamma_{k}=\gamma_{\text {max }}$, and write $\|\vec{x}\|=\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{d}^{2}\right)^{1 / 2}$.
3. (a) For a family of d-dimensional regions, with scaling as per the previous question, determine, to leading order, the scaling of hyper-surface area S with volume V. In other words, find the exponent β in $S \propto V^{\beta}$ as $V \rightarrow \infty$. Assume that nothing peculiar happens with the shapes (as we have always implicitly done), in that there is no fractal roughening.

Hint: As a start, figure out how the circumference for the rectangles in question 1 scales with area A. For d dimensions, think about how the hyper-surface area of a hyperrectangle (or orthotope) would scale.
(b) For general d, what is the minimum and maximum possible values of β and for what values of the γ_{i} does these extrema occur?

The goal and a connection to energy metabolism:
The surface area-supply network mismatch for allometrically growing

