CocoNuTs
Complex Networks
@networksvox
Everything is connected

Complex Networks, CSYS/MATH 303

 University of Vermont, Spring 2018Assignment $1 \bullet$ code name: Basically made of glass

Dispersed: Thursday, January 18, 2018.
Due: Friday, February 2, by $11: 59$ pm, 2018.
Some useful reminders:
Deliverator: Peter Dodds
Office: Farrell Hall, second floor, Trinity Campus
E-mail: peter.dodds@uvm.edu
Office hours: 10:05 am to $12: 00 \mathrm{pm}$, Tuesday and Thursday
Course website: http://www.uvm.edu/pdodds/teaching/courses/2018-01UVM-303
All parts are worth 3 points unless marked otherwise. Please show all your workingses clearly and list the names of others with whom you collaborated.

Graduate students are requested to use ${ }^{A} T_{E} \mathrm{E}$ (or related $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ variant).
Email submission: PDF only! Please name your file as follows (where the number is to be padded by a 0 if less than 10 and names are all lowercase): CSYS303assignment\%02d\$firstname-\$lastname.pdf as in CSYS303assignment06michael-palin.pdf

Please submit your project's current draft in pdf format via email. Please use this file name format (all lowercase after CSYS):
CSYS303project-\$firstname-\$lastname-YYYY-MM-DD.pdf as in
CSYS303project-lisa-simpson-1989-12-17.pdf

- We will explore real networks throughout the course performing some key measurements introduced in Principles of Complex Systems.
- Please note that while Matlab files are available, you are encouraged to use Python (along with, for example, NetworkX or graph-tools).
- Data is available in two compressed formats:
- Matlab + text (tgz): http://www.uvm.edu/pdodds/teaching/courses/ 2018-01UVM-303/data/303complexnetworks-data-package.tgz
- Matlab + text (zip): http://www.uvm.edu/pdodds/teaching/courses/ 2018-01UVM-303/data/303complexnetworks-data-package.zip
and can also be found on the course website (helpfully) under data.
- The main Matlab file containing everything is networkdata_combined.mat.
- For directed networks, the $i j$ th entry of the adjacency matrix represents the weight of the link from node i to node j. Adjacency matrices for undirected networks are symmetric.
- For all questions below, treat each network as undirected unless otherwise instructed.
- For this assignment, convert all weights on links to 1 , if the network is weighted.
- You do not have to use Matlab for your basic analyses. Python would be a preferred route for many.
- The supplied text versions may be of use for visualization using gml.
- The Matlab command spy will give you a quick plot of a sparse adjacency matrix.
- Real data sets used here are taken from Mark Newman's compilation (and linked-to sites) at http://www-personal.umich.edu/~mejn/netdata/.

1. Record in a table the following basic characteristics:

- N, the number of nodes;
- m, the total number of links;
- Whether the network is undirected or directed based on the symmetry of the adjacency matrix;
- $\langle k\rangle$, the average degree ($\left\langle k_{\text {in }}\right\rangle$ and $\left\langle k_{\text {out }}\right\rangle$ if the network is directed);
- The maximum degree $k^{\max }$ (for both out-degree and in-degree if the network is directed);
- The minimum degree $k^{\text {min }}$ (for both out-degree and in-degree if the network is directed).

2. $(3+3)$
(a) Plot the degree distribution P_{k} as a function of k. In the case that P_{k} versus k is uninformative, also produce plots that are clarifying. For example, $\log _{10} P_{k}$ versus $\log _{10} k$.
(Note: Always use base 10.)
(b) See if you can characterize the distributions you find (e.g., exponential, power law, etc.).
3. Measure the clustering coefficient C_{2} where

$$
C_{2}=\frac{3 \times \# \text { triangles }}{\# \text { triples }}
$$

For directed networks, transform them into undirected ones first.
One approach is to compute C_{2} as

$$
C_{2}=\frac{3 \times \frac{1}{6} \operatorname{Tr} A^{3}}{\frac{1}{2}\left(\sum_{i j}\left[A^{2}\right]_{i j}-\operatorname{Tr} A^{2}\right)} .
$$

Note: avoiding computing A^{3} is important and can be done.

